
Physica A 434 (2015) 232–239

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Ecological optimization for general heat engines
Rui Long, Wei Liu ∗

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

h i g h l i g h t s

• The heat exchanging processes are non-isothermal.
• The internal dissipations are considered.
• The optimization is conducted under the ecological criterion.
• General upper and lower bounds of the optimal efficiency have been deduced.
• The efficiency bounds of different real heat engines have been proposed.
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a b s t r a c t

We conducted an analysis of efficiency and its bounds for general heat engines under
the maximum ecological criterion. For generality, both nonisothermal heat-exchanging
processes and internal dissipation were taken into consideration. When the product of the
internal dissipation and the heat capacity ratio is one, the efficiency under the maximum
ecological criterion is the same as that of the irreversible Carnot model. However, the
efficiencies have different physical meanings and optimization spaces. Furthermore, the
efficiency is independent of the time it takes to complete each process and the heat
conductance. For other situations, numerical calculations were conducted to investigate
the parameters’ effects on optimal efficiency. When the dimensionless contact times
approach zero, the irreversible Carnot model is recovered. The general upper and lower
bounds of optimal efficiency are obtained by applying the asymmetric heat capacity ratio
limits when the dimensionless contact times approach infinity. In addition, the efficiency
of general endoreversible heat engines was investigated. The efficiency bounds of different
real-life heat engines under the maximum ecological criterion are proposed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The optimization of real thermodynamic cycles to save energy and fuel has attracted attention recently. The upper bound
of efficiency for heat engines that operate between two heat reservoirs at temperatures Tc and Th (Th > Tc) is Carnot
efficiency [1]. However, reaching Carnot efficiencymeans vanishing power output and has limited guidance on the practical
applications since in Carnot heat engines all processes are quasistatic. The ideal Carnot cycle must be made to go faster to
meet real-life demand. Finite-time thermodynamic analysis has provided a way to optimize real heat engines [2–7].

For heat engines, the main optimization criterion is maximum power (MP) output. By considering that the heat transfer
processes between the heat reservoirs and the working fluid take a finite amount of time, Curzon and Ahlborn [8] proposed
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the concept of the endoreversible Carnot heat engine and derived its efficiency at maximum power output, i.e., the well-
known Curzon–Ahlborn (CA) efficiency, ηCA = 1 −

√
Tc/Th. The CA model has been modified to describe real-life heat

engines more accurately by considering different heat transfer laws between the working medium and the heat reservoirs
and the internal dissipation, and some good results with the maximum power output criterion have been obtained [9–15].
Furthermore, taking into account the entropy generation in isothermal processes,which are treated as the inversed functions
of process time duration, Esposito et al. [16] proposed the low dissipation model, and obtained the lower and upper bounds
of efficiency at MP criterion under asymmetric dissipation limits. In addition, in the low-dissipation model, CA efficiency is
reached under symmetric dissipation conditions. Recently, there has been research on the efficiency and its bounds of low-
dissipation heat engines with the MP criterion [17–19]. In addition, the efficiency at MP of linear irreversible heat engines
described by the Onsager relations and the extended Onsager relations has been studied [20–22].

Real-life heat converter devicesmay notwork atMP output but under a compromise between energy benefits and losses.
Angulo-Brown [23] proposed an optimization criterion for Carnot heat engines to account for the benefits and losses of
energy, i.e., E = Ẇ − Tc σ̇ , where Ẇ is the power output, Tc is the temperature of the cold reservoir, and σ̇ is the entropy
production rate. This became theΩ criterion for heat engines defined later byHernández et al. [24]. Based on theΩ criterion,
de Tomas et al. [25] and Long et al. [26] obtained the efficiency limits of heat engines for the low-dissipation model and the
minimally nonlinear irreversible model, respectively. However, the lower bounds they proposed were very close to the
upper bounds and did not agree with the observed efficiencies. Yan [27] stated that E = Ẇ − T0σ̇ , where T0 is the ambient
temperature, is more reasonable for heat engines and represents the best compromise between Ẇ and the power loss T0σ̇ ,
which results from entropy generation in the system and its surroundings.

Much research has focused on the irreversible Carnot heat engine under the ecological optimization criterion [2,28–36].
However, there are few reports on nonisothermal heat-exchanging processes. In the heat-exchanging processes in real heat
engines, the temperatures of the working medium change continuously to reach the highest or the lowest values, i.e., the
heat-exchanging processes are not isothermal. Although both the heat source, heat sink and working fluid can experience
temperature variations during a thermodynamic heat-engine cycle [37,38], in this study we focused on the case where
the heat source and heat sink temperatures remain constant to identify the effect that the variable temperature of the
working fluid has on the efficiency of the cycle. Motivated by Ref. [39], we studied the performance of nonisothermal heat-
exchanging processes under the ecological criterion. For generality, the internal dissipation also was included, making our
modelmore realistic. In this paper,wepresent our systematic study on the efficiency of general heat engines at themaximum
ecological criterion and propose its lower and upper bounds. In addition, we discuss the efficiency of general endoreversible
heat engines under the ecological figure of merit and the efficiency bounds of different heat engines under the maximum
ecological criterion.

2. Mathematical model

In a heat engine, a certain amount of heat Qh is absorbed from the hot reservoir (Th) and some heat Qc is rejected and
goes to the cold reservoir (Tc) at the end of a cycle. We assumed that the heat transfer between the heat source and the
working medium conforms to Newton’s law of cooling [39]:

dQ
dt

= cm
dT
dt

= k(Ts − T ), (1)

where Q is the heat exchanged during the process, c is the heat capacity, m is the mass of the working substance, T is the
temperature of the working substance, Ts is the temperature of the heat source, and k is the heat conductance (i.e., contact
area multiplied by the heat transfer coefficient). According to Eq. (1), the temperature of the working substance in the heat-
absorbing process, Thw , is a function of time t:

Thw(t) = Th + (Th0 − Th)e−t/Ψh , (2)

where Th0 is the initial temperature of the working medium in the heat-absorbing process and Ψh = chm/kh is the temporal
response of the working fluid in the heat-absorbing process, where ch is the specific heat of the working medium and kh
is the heat conductance in the heat-absorbing process. Ψh is measured in units of time. The heat absorbed from the hot
reservoir is defined by

Qh =

 τh

0
kh(Th − Thw)dt = chm(Th − Th0)


1 − e−τh/Ψh


, (3)

where τh is the time needed to complete the heat-absorbing process. The relative change in the entropy of the working
substance in the heat-absorbing process is given by

1sh =

 τh

0

dQh

T
= chm ln


Th + (Th0 − Th)e−τh/Ψh

Th0


. (4)
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The temperature of the working medium, the heat rejected to the cold reservoir, and the entropy change during the heat-
releasing process are given by

Tcw(t) = Tc − (Tc − Tc0)e−t/Ψc , (5)

Qc =

 τc

0
kc(Tcw − Tc)dt = ccm(Tc0 − Tc)(1 − e−τc/Ψc ), (6)

1sc =

 τc

0

dQc

T
= −ccm ln


Tc − (Tc − Tc0)e−τc/Ψc

Tc0


, (7)

where Tc0 and cc are the initial temperature and specific heat of the working medium in the heat-releasing process,
respectively; τc is the duration of the heat-releasing process; and Ψc = ccm/kc is the temporal response of the working
fluid in the heat-releasing process, where kc is the heat conductance in the heat-releasing process. Ψc is measured in units
of time. In this paper, we assumed that the compression and expansion processes proceed instantaneously and the time
needed to complete those processes is zero. However, we considered the irreversibility in those two processes. To describe
quantitatively the effect of the internal dissipation of the working fluid on the performance of the heat engine, a parameter
Is = 1sc/1sh has been proposed [12,13]. Is represents the degree of internal irreversibility resulting from the working fluid.
When Is = 1, the heat engine cycle is endoreversible, and when Is > 1, the cycle is internally irreversible. According to Eqs.
(4) and (7),

Tc − (Tc − Tc0)e−τc/Ψc

Tc0


Th + (Th0 − Th)e−τh/Ψh

Th0

Isα

= 1, (8)

where α is the ratio of the specific heats of the working medium in the heat-absorbing and -releasing processes. According
to Eq. (8), we can rewrite Th0 as a function of Tc0.

Entropy production is defined as

σ =
Qc

Tc
−

Qh

Th
, (9)

the ecological function is defined as

Ė =
Qh − Qc − T0σ

τh + τc
, (10)

and the efficiency is defined as

η = 1 −
Qc

Qh
. (11)

Combining Eqs. (3), (6), and (8) and maximizing Eq. (10) with respect to Tc0 yield
T0
Th

+ 1


(1 − e−τh/Ψh)2

Is

[(1 − e−τc/Ψc )ϕ + e−τc/Ψc ]
−1/Isα−1

{[(1 − e−τc/Ψc )ϕ + e−τc/Ψc ]−1/Isα − e−τh/Ψh}2
−


T0
Tc

+ 1


1 − ηC

ϕ2
= 0, (12)

where ϕ = Tc/Tc0. Substituting Eqs. (3) and (6) into Eq. (11) yields the efficiency at the maximum ecological criterion:

η = 1 −
(1 − ηC) [(1/ϕ) − 1] (1 − e−τc/Ψc )

α

1 −

1−e−τh/Ψh

[(1−e−τc /Ψc )ϕ+e−τc /Ψc ]−1/Isα−e−τh/Ψh


(1 − e−τh/Ψh)

. (13)

In general, η is derived by solving Eq. (12) for ϕ and substituting the solution into Eq. (13). Below, we discuss systematically
the efficiency at the maximum ecological criterion.

3. Efficiency when Isα = 1

When α = 1/Is, Is ≥ 1; therefore, α ≤ 1. This means that the specific heat of the workingmedium in the heat-absorbing
process is less than or equal to that of the heat-releasing process. Eqs. (12) and (13) can be rewritten as

(1 − e−τh/Ψh)ϕ

1 − e−τh/Ψh [(1 − e−τc/Ψc )ϕ + e−τc/Ψc ]

2

=
T0/Tc + 1
T0/Th + 1

Is(1 − ηC) (14)

and

η = 1 −
1 − e−τh/Ψh [(1 − e−τc/Ψc )ϕ + e−τc/Ψc ]

α(1 − e−τh/Ψh)ϕ
(1 − ηC). (15)
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Fig. 1. The T–S diagram of an optimal heat engine cycle, where Is = 1.2, α = 0.5, 0.83, 1.5, Th = 600 K, Tc = 300 K , τh/Ψh = τc/Ψc = 1, and
ccm = 10 J/K.

Solving Eq. (14) yields the optimal ϕ, which is substituted into Eq. (15) to obtain

ηE
∗

= 1 −


T0/Th + 1
T0/Tc + 1

Is(1 − ηC). (16)

Eq. (16) is independent of the timeduration of each process and the heat conductance. The T–S diagramof an optimal heat
engine cycle is shown in Fig. 1 (the black-lined cycle has Is = 1.2 andα = 0.83). The heat-absorbing and -releasing processes
are not isothermal. The nonisentropic processes are also presented. When the internal dissipation vanishes, Is = α = 1 and
Eq. (16) is reduced to

ηE,endo
∗

= 1 −


T0/Th + 1
T0/Tc + 1

(1 − ηC). (17)

This definition of efficiency is the same as that obtained for the endoreversible Carnot model under the ecological
criterion [27]. But the physical meanings and optimization spaces are different. In the endoreversible Carnot model, the
efficiency with the optimal ecological criterion is obtained by maximizing the ecological function with respect to the time
needed for the heat-absorbing and -releasing processes, while in this model, the efficiency is obtained by maximizing the
ecological function with respect to the initial temperature of the working medium and the times needed for the processes
are treated as constants. Unlike in the endoreversible Carnot heat engine, in this model the temperature of the working
medium in either heat-exchanging process is not constant, making it more practical and realistic.

4. Efficiency when Isα ≠ 1

Wedefined τ/Ψ as the dimensionless contact time; it reflects the degree of equilibrium between the temperatures of the
workingmediumand the heat reservoirs. A larger τ/Ψ means that theworkingmedium is in contactwith the heat reservoirs
for a longer time, which leads to a higher final temperature in the heat-absorbing process and a lower temperature in the
heat-releasing process. When Isα ≠ 1, Eq. (12) is transcendental and cannot be solved explicitly. We performed numerical
calculations to investigate the effects of Is, α, and τ/Ψ on the optimal efficiencies.

As seen in Figs. 2 and 3, when the dimensionless contact times are the same and equal to 1, the optimal efficiency ηE
decreases with the increasing internal dissipation parameter Is and heat capacity ratio α. However, when Is is fixed, the
efficiency reaches its upper and lower bounds when α → 0 and α → ∞. Fig. 1 shows the impact of α on the cycle
configuration, i.e., a larger α means larger entropy changes in the heat-exchanging processes.

The effect of the dimensionless contact times on the optimal efficiency is illustrated in Figs. 4 and 5. In Fig. 4, when
α < 1/Is and τc/Ψc is fixed, the optimal efficiency increases with increasing τh/Ψh in a certain interval and reaches its lower
and upper bounds under the asymmetric limits τh/Ψh → 0 and τh/Ψh → ∞, respectively. The lower bound is ηE

∗. When
α > 1/Is, the optimal efficiency decreaseswith increasing τh/Ψh in a certain interval and reaches its lower and upper bounds
under the asymmetric limits τh/Ψh → ∞ and τh/Ψh → 0, respectively. The upper bound is ηE

∗. As mentioned before, when
α = 1/Is, the optimal efficiency is η∗ and is independent of τh/Ψh.
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Fig. 2. Optimal efficiency as a function of Is for different cold reservoir temperatures (Tc = 300, 350, 400 K), where Th = 600 K, T0 = 273 K, α = 0.5,
and τc/Ψc = τh/Ψh = 1.

Fig. 3. Optimal efficiency as a function of heat capacity ratio, where Th = 600 K, Tc = 300 K, T0 = 273 K, Is = 1.2, and τc/Ψc = τh/Ψh = 1.

Fig. 4. Optimal efficiency as a function of dimensionless contact times in the heat-absorbing process under different heat capacity ratios, where
Th = 600 K, Tc = 300 K, T0 = 273 K, Is = 1.2, and τc/Ψc = 1.
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Fig. 5. Optimal efficiency as a function of dimensionless contact times in the heat-releasing process under different heat capacity ratios, where Th =

600 K, Tc = 300 K, T0 = 273 K, Is = 1.2, and τh/Ψh = 1.

Fig. 5 shows that when α < 1/Is and τh/Ψh is fixed, the optimal efficiency increases with increasing τc/Ψc in a certain
interval and reaches its lower and upper bounds when τc/Ψc → 0 and τc/Ψc → ∞, respectively. The lower bound is ηE

∗.
When α > 1/Is, the optimal efficiency decreases with increasing τc/Ψc in a certain interval and reaches its lower and upper
bounds when τc/Ψc → ∞ and τc/Ψc → 0. The upper bound is ηE

∗. As mentioned before, when α = 1/Is, the optimal
efficiency is ηE

∗ and is independent of τc/Ψc .
Figs. 4 and 5 show thatwhen τ/Ψ → 0, the efficiencywith themaximumecological criterion is ηE

∗ and is not affected by
the heat capacity ratio. Under these conditions, the heat-exchanging processes are short enough so that the final temperature
of the working substance is almost equal to its initial temperature after either process. Expanding the term exp(−τ/Ψ ) to
the first order of τ/Ψ in Eqs. (12) and (13) reduces them to

ϕ


1 +

(1 − ϕ)τc/Ψc

Isατh/Ψh

−1
2

=
T0/Tc + 1
T0/Th + 1

Is(1 − ηC) (18)

and

η = 1 −


1 +

(1 − ϕ)τc/Ψc

Isατh/Ψh


(ϕ/Is)−1


(1 − ηC). (19)

Combining Eqs. (18) and (19) yields the same expression as Eq. (16) for ηE
∗ and is independent of the heat capacity

ratio. When the dimensionless contact times approach 0, the heat-exchanging processes are isothermal and the irreversible
Carnot model is recovered, as depicted in Fig. 6(a).

According to the preceding analysis, when α < 1/Is, the optimal efficiency increases with increasing τ/Ψ and reaches
its maximum value when τ/Ψ → ∞. The lower bound is ηE

∗ when τ/Ψ → 0 and is independent of the heat capacity ratio.
When α > 1/Is, the optimal efficiency decreases with increasing τ/Ψ and reaches its minimum value when τ/Ψ → ∞.
The upper bound is ηE

∗ when τ/Ψ → 0 and is independent of the heat capacity ratio. Thus, the general upper and lower
bounds of the optimal efficiency can be obtained when τ/Ψ → ∞ by applying the asymmetric heat capacity limits α → 0
and α → ∞.

When τ/Ψ → ∞, the contact time is long enough so that the heat exchange between the working substance and the
heat reservoirs is sufficient and the final temperature of the working substance is almost equal to that of the heat reservoir.
A typical heat engine cycle is shown in Fig. 6(b). The exponential terms exp(−τ/Ψ ) in Eqs. (12) and (13) can be eliminated
thus simplifying them to

ϕ1/Isα+1
=

T0/Tc + 1
T0/Th + 1

Is(1 − ηC) (20)

and

η = 1 −
(1 − ϕ)

α(ϕ − ϕ1/Isα+1)
(1 − ηC). (21)
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Fig. 6. The T–S diagrams of two optimal heat engine cycles with different dimensionless contact times: (a) τh/Ψh = τc/Ψc = 5 and (b) τh/Ψh = τc/Ψc =

0.01, where Is = 1.2, α = 0.5, Th = 600 K, Tc = 300 K, and ccm = 10 J/K.

Combining Eqs. (20) and (21) yields

ηE = 1 −

 1 −


T0/Tc+1
T0/Th+1 Is(1 − ηC)

Isα/(Isα+1)

α


T0/Tc+1
T0/Th+1 Is(1 − ηC)

Isα/(Isα+1)
−

T0/Tc+1
T0/Th+1 Is(1 − ηC)


 (1 − ηC ). (22)

By applying the asymmetric limits α → 0 and α → ∞, we get

ηE
+

= 1 −

Is(1 − ηC) ln

T0/Tc+1
T0/Th+1 Is(1 − ηC)


T0/Tc+1
T0/Th+1 Is(1 − ηC) − 1

(23)

and

ηE
−

= 1 −

T0/Tc+1
T0/Th+1 Is(1 − ηC) − 1

T0/Tc+1
T0/Th+1 ln


T0/Tc+1
T0/Th+1 Is(1 − ηC)

 . (24)

As mentioned above, ηE
+ and ηE

−, Eqs. (23) and (24), are the upper and lower bounds of the efficiency of a general heat
engine under the maximum ecological criterion.

5. General endoreversible heat engines

When internal dissipation is not taken into consideration, the general heat engine is endoreversible, reflecting that the
irreversibility results from only the heat exchange between the working medium and the heat reservoirs. Thus, Is = 1
and ηE

∗ becomes ηE,endo
∗. According to the above analysis, ηE,endo

∗ is the lower and upper bounds of the optimal efficiency
when α < 1 and α > 1, respectively. In addition, the optimal efficiency is ηE,endo

∗ if α = 1. Therefore, in endoreversible
heat engine cycles such as the Diesel cycle (ch = cp and cc = cv), the Brayton cycle (cc = ch = cp), and the Otto cycle
(cc = ch = cv), where the heat capacity in the heat-absorbing process is not less than that in the heat-releasing process, the
maximum efficiency under the maximum ecological criterion is bounded by ηE,endo

∗, while in cycles such as the Atkinson
cycle (ch = cv and cc = cp), where the heat capacity in the heat-absorbing process is less than that in the heat-releasing
process, ηE,endo

∗ is the lower bound.
Furthermore, the general upper and lower bounds of the efficiency can be obtained by applying the asymmetric heat

capacity limits α → 0 and α → ∞, respectively. Substituting Is = 1 into Eqs. (23) and (24) yields

ηE,endo
+

= 1 −

(1 − ηC) ln

T0/Tc+1
T0/Th+1 (1 − ηC)


T0/Tc+1
T0/Th+1 (1 − ηC) − 1

(25)
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and

ηE,endo
−

= 1 −

T0/Tc+1
T0/Th+1 (1 − ηC) − 1

T0/Tc+1
T0/Th+1 ln


T0/Tc+1
T0/Th+1 (1 − ηC)

 . (26)

6. Conclusions

We conducted an analysis of efficiency and its bounds with the maximum ecological criterion for general heat engines.
For generality, both the nonisothermal heat transfer processes and the internal dissipation were taken into consideration.
When Isα = 1, the bounds of the efficiency were found to be ηE

∗ and independent of the time it takes to complete each
process and of the heat conductance. When Isα ≠ 1, we conducted numerical calculations to investigate the effect of the
parameters Is, α, and τ/Ψ on the optimal efficiency under the ecological criterion. We found that the optimal efficiency
decreases monotonously with the increase in Is and α. When τ/Ψ → 0, the irreversible Carnot model is reached and the
efficiency at the maximum ecological criterion is ηE

∗ and is independent of α. When τ/Ψ → ∞, the general upper and
lower bounds of the optimal efficiency are obtained by applying the asymmetric heat capacity limits α → 0 and α → ∞,
respectively.

In addition, we studied the efficiency of general endoreversible heat engines with the maximum ecological criterion and
analyzed the efficiency bounds of different heat engines. In heat engine cycles such as the Brayton, the Otto, and the Diesel,
where the heat capacity in the heat-absorbing process is not less than that in the heat-releasing process, ηE,endo

∗ is the
upper bound of the efficiency, and in cycles such as the Atkinson, where the heat capacity in the heat-absorbing process is
less than that in the heat-releasing process, ηE,endo

∗ is the lower bound of the efficiency. We also derived the general upper
and lower bounds of the efficiency of general endoreversible heat engines. This study may provide practical insight to help
in the design and operation of real heat engines.
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