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SUMMARY 

This paper discusses heat and mass transfer in desorption drying. A basic equation system is derived to describe 
coupled heat and mass transfer in a porous medium with moisture desorption under temperature gradients and a 
vacuum environment. The desorption mushy zone model is used to obtain an exact solution for coupled heat and 
mass transfer with a moving desorption mushy zone in a porous half-space. The results are analysed numerically to 
demonstrate the effects of various parameters on desorption. 
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1. INTRODUCTION 

In recent years there has been much interest in the physics of porous media in freeze-drying, owing to its 
extensive application in the food, chemical and medical industries. 

A traditional freeze-drying process consists of two successive steps, i.e. sublimation drying and 
desorption drying. In an ordinary freeze-drying process, desorption drying is designed to begin after 
sublimation drying comes to an end, by raising the heating temperature and lowering the vacuum 
pressure. 

Most authors have derived the theory of desorption based on Fick's law. The most extensively used 
desorption drying theory is that of King (19681, which has also been detailed by Mellor (1978). The basic 
assumptions in King's theory are as follows. 

(i) The vapour transfer is described by Fick's law. 
(ii) Vapour is in equilibrium with the sorbed moisture. 
(iii) The heat of sorption is constant. 
(iv) The heat of sorption is greater than the sensible heat. 
(v) Surface diffusion of moisture is ignored. 
(vi) The amount of sorbed moisture in the liquid phase is much larger than that of moisture in the 

pores in the vapour phase. 

By ignoring the transient terms in the mass and energy conservation equations, he obtained the following 
equation to describe the desorption drying: 

"f) 
d x  d x  e f fdx  (1) 
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where D,, is the effective diffusivity and f is the moisture content sorbed on the walls of the porous 
skeleton. 

Obviously, there exist some shortcomings in an equation for moisture movement in desorption drying 
constructed in this way: firstly, the equation describes the vapour transfer in an indirect way. Vapour 
transfer is undoubtedly by diffusion, which should only be dependent on vapour concentration gradients 
in the vapour space - the pores in the porous medium - not on the sorbed moisture content gradients. 
The desorption of sorbed moisture just provides a mass source for vapour transfer; secondly, the equation 
implicitly ignores the effect of transient heat and mass transfer terms, although it looks like an unsteady 
transfer equation; thirdly, and most importantly, the given equation does not apply to the last phase of 
desorption drying, where the assumption that the amount of sorbed moisture in the condensed phase is 
much greater than that in the vapour phase breaks down. 

In what follows we endeavour to develop a novel desorption drying theory to overcome the above 
difficulties by extending our recent researcher on heat and mass transfer in simultaneous sublimation and 
desorption drying (Peng er aI., 1992a,b; Peng and Chen, 1993), especially the concept of desorption mushy 
zone (Peng and Chen, 1994), to ordinary desorption drying. We first develop the coupled heat and mass 
transfer equations applicable to desorption drying, then derive the exact solution of heat and mass 
transfer with a desorption mushy zone in a porous half-space to analyse the effect of various parameters 
on desorption. 

2. BASIC EQUATIONS OF DESORPTION DRYING 

Desorption drying is essentially a process of coupled heat and mass transfer. Heat transfer through 
conduction, convection and radiation to the humid porous region - provides energy to desorb the 
moisture. Heat and mass transfer are coupled through the phase-change - the desorption process. In 
this process, the temperature, vapour concentration and sorbed moisture content change with space and 
time. 

2.1 Energy conservation 

Applying energy conservation to the elements in a porous medium with moisture desorption yields 

here p is the density, f the volumetric fraction of the sorbed moisture, h the enthalpy, C the 
concentration, 4 the heat flux, and j the mass flux. The subscripts w, v, a, and s represent the sorbed 
water, vapour, air and solid skeleton, respectively, but the subscript for vapour concentration is omitted. 

In deriving the Luikov equations applicable to sublimation drying, Peng (1994) ignored the desorption 
of sorbed moisture so that the volumetric fraction of sorbed moisture f was considered constant. Here, 
we have to consider the change of f with space and time. 

Defining the isobaric specific heat by 

C=(g) I’ (3) 

then 

dT df dC fq, ( pc)-  + ph,- +h,- + ht,- = -div q - ( j v c ,  +j ,c , )VT-  h ,  div j ,  - h a  divj, (4) d t  d t  rlt d t  

where ( p c )  is the effective product of concentration and isobaric heat of the mushy zone 
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2.2 Mass conservation 

Then mass conservation of vapour yields 

-=  dC -div j , - p -  d f  
d t  at 

The mass conservation of inert gas (air) yields 

d C,  -- - -div j, at 

Substitution of equations (6) and (7) into equation (4) yields 

( p c ) ,  dT = -div q - ( j v c ,  +j,c,).VT + p(hv  - h w ) -  d f  
d t  

(6) 

(7) 

The first term on the right-hand side of equation (8) represents the conduction heat transfer, the 
second term represents the convection heat transfer, and the third term represents the heat sink due to 
desorption. In freeze-drying, the contribution of convection is very small compared to the conduction 
heat transfer. (Luikov, 1966, 1975; Peng, 1994), so that the second term can be ignored. 

2.3. Constitutive equations 

The heat conduction is represented by the Fourier law: 

q =  -kVT 

where k is the effective heat conductivity for the porous medium. 
The mass transfer is represented by Fick’s law: 

j ,  = - a,VC 

j ,  = - a,,VC, 

(9) 

The so-defined mass diffusional law may be found in the work of Bird et al. (1960, pp. 542-546), and is 
used very often in chemical engineering. 

2.4 Heat and mass transfer equations applicable to desorption drying 

Writing h,  - h,  = Hp,  and substituting equations (9) and (10) into equations (61481, we obtain 

( p c ) -  dT = div ( R V T )  + pHp;lt d f  
d t  

-- a‘ - div (cz,VC> - P X  J f  

at 

( l l a )  

( l l b )  

The above equations, together with the corresponding boundary and initial conditions, constitute the 
complete mathematical description of a desorption drying problem. In contrast to King’s theory, the 
above equations provide a deep insight into the transport mechanism in desorption drying, and the 
coupling relationship between heat and mass transfer. 

Generally speaking, the thermophysical properties in the above equations are functions of tempera- 
ture, pressure, vapour and air concentrations, so that the equations can only be solved numerically. 
However, in desorption drying, the temperature and concentration change very slowly, so that the 
constant thermophysical property analysis as very often carried out in the literature, (e.g. by Luikov, 
1979, is still helpful for our understanding of the practical process. In the following section, we present 
an exact solution of the desorption of a porous half-space to analyse the effect of various parameters. 
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3. ANALYSIS OF DESORPTION IN A POROUS HALF-SPACE 

3.1 Physical and mathematical model 

The physical model is shown in Figure. 1. A semi-infinite sublimed porous medium initially has a uniform 
sorbed moisture content f,, and uniform temperature TI,. At times greater than zero, it is exposed to a 
vacuum environment, and its surface is kept at constant temperature T,, which is higher than the 
desorption temperature Td. As a result, the desorption process begins, and the whole region is divided 
into two regions, namely, the desorbing region and the dried region. Furthermore, as indicated in our 
recent work (Peng and Chen, 19941, on freeze-drying, the pressure gradient in the porous sublimed 
region is very small, so that we can consider desorption as approximately an isobaric process where the 
desorption occurs over an extended temperature range (the desorption mushy zone) 

Based on the preceding theory, and the following assumptions: 

(i) 
(ii) 

the problem is one dimensional; 
when the temperature is higher than the desorption temperature Td, the sorbed moisture content 
reduces to fd, which is the moisture content resulting from the combined effects of chemisorp- 
tion, static electric forces, etc., which cannot be desorbed in desorption drying; 

(iii) the thermophysical properties are constant but different for different regions; 
(iv) the temperature Td at the desorption interface is a known constant but the concentrations of 

vapour, cd, and air, c a d ,  at the interface are unknown constants, which should be determined in 
the solving process; 

the desorption drying can be formulated as follows. 
For the desorption mushy region: 

For the dried region: 

The corresponding initial and boundary conditions are 

t = 0,  T ,  = To, c, = co, c,, = c,,,, f = f i ,  

x = = ,  T,=To,  c, =co, c,, =Ca,), f = f 1 ,  

x = O ,  T,=T,,  C2 = C , ,  C, ,  = C,,,  f =fd 

The matching conditions at the desorption interface are 

T ,  = T2 = Td 
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2: dried 1 : desorption 
mushy zone 
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cf+7<* C” 

0 SO) X 

Figure 1. Physical model 

C,I = ca, = c a d  

f = f d  

The energy and mass balance at the interface yield 

3.2 Solution 

As in previous work (Peng and Chen, 19941, we only treat the special case where the volumetric fraction 
of sorbed moisture is a linear function of temperature: 

f =fl) - fo  -fd (TI - T ( ) )  (16) 

Equations (12)-(16) can be solved by the method stated in our previous work (Peng and Chen, 1994). By 
using the dimensionless parameters defined in nomenclature, the exact solutions can be obtained as 
follows: 
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cu, 1 

Figure 2. The effects of a2, and kT on the rates of desorption 

For the exact solutions obtained, we have made a numerical analysis to demonstrate the effect of 
various parameters on the desorption rate and vapour concentration at the desorption interface; the 
results are shown in Figures 2 and 3, respectively. On the figures, only the parameters whose values are 
different from the reference values are indicated. The selected reference values include: A = 0.01, 
Lu I -  - 10, aZI  = 3, A = -3, Td = 1.07, TI, = 1, I?, = 0.01, cl, = 0.1, f0 = 0.05, fd = 0.03. The calculation 
results apply to the desorption drying of the porous medium of sand with moisture. 

Figure 2 shows the effects of the ratio of thermal diffusivities, a z l ,  and the ratio of the steady heat 
fluxes, kT, between the dried region and the desorption mushy zone, on the rate of desorption. A larger 
az I  always results in slower desorption, but a larger kT results in faster desorption. A large a2, means a 
large sorbed moisture content (if the thermophysical properties and the temperatures remain unchanged), 

0.01 61 I 

0.0121 -2 I 

Lu, 
Figure 3. The effects of A and Lu,  on the vapour concentration 
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which lowers the desorption rates; a large kT means a large temperature difference across the porous 
medium, which raises the desorption rates. 

Figure 3 shows the effect of the desorption parameters, A ,  and the Luikov number, Lu, ,  on the 
interface vapour concentration cd. A larger A, which means a smaller amount of sorbed moisture 
content, results in a smaller vapour Concentration. A larger Lu, doesn’t affect the vapour concentration 
very much. 

4, CONCLUSION 

A novel desorption drying theory has been developed, and the equations derived to describe transient 
heat and mass transfer in desorption drying. 

The present theory at least improves upon that of King in following three aspects: (i) it is directly 
related to the real transport mechanism, in contrast to King’s indirect equation; (ii) it is transient in both 
heat and mass transfer; (iii) it is even applicable to the last phase of desorption drying where King’s 
theory breaks down. 

By using the desorption mushy zone model together with the present theory, an exact solution has 
been obtained for heat and mass transfer with desorption in a porous half-space, with results analysed. 

The results indicate that the rates of desorption are lowered with an increase in a?,, but are raised 
with an increase in kT. The vapour concentration diminishes with an increase of A. 

NOMENCLATURE 

c = specific heat (J kg-’ K-’1 
C = hiv/&, concentration of moisture (kg m-,) 
C, = M a / & ,  concentration of air (kg m-,> c, = M J & ,  concentration of solid skeleton, or surface vapour concentration (kg rn-3) 
C = C / C , ,  non-dimensional concentration of vapour 
c, = C,/C, ,  non-dimensional concentration of air 
Defi = effective ‘diffusivity’ of sorbed moisture (m2 s - ’ )  
f = Vv/Vf, adsorption water volume fraction 
h = enthalpy (J kg-’) 
Hp 
j 
k 

Lu = a,/a, Luikov number of vapour diffusion 
Lu, = a,,,,/a, Luikov number of air diffusion 
M = weight (kg) 
q = heat flux (W m-’) 
S(t>  = position of second desorption front (m> 
t = time (s) 
T = temperature (K) 
T = T/T , ,  non-dimensional temperature 
V = volume (m3) 
x = space coordinate (m) 

= desorption heat (J kg-’1 
= mass flux(kg m-2 s - ’ )  
= effective thermal conductivity (W mK-’ 1 

kT = k2(T\ - Td)/[kl(Td - To)] 

Greek symbols 

a 
a ,  

= thermal diffusivity (m2 s - ’ )  
= diffusivity of vapour (m2 s- ‘1 
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ff ma 

Q21 

f f T  

‘ P I  

P 
A 
77 
P 

A 

= diffusivity of air (m2 s ) 
= .,/a; 

,effective thermal diffusivity in desorption mushy zone (m’ s -  I )  I - I  = (  f f l  kl Td - T,, 

1 
-+““ 1 P H  f - f d  

- - pa:  ;’I$ desorption parameter (kg m-I S K I  K-’)  
d I I  9 

= density of sorbed water (kg m-’1 
= S ( t ) / 2 [  c ~ ~ t ] ’ / ~ ,  position parameters at the second desorption front 

- - ‘I (kg m-3  K - ’ )  
= x / 2 [  cY2t]l/? 

f fml  - f f T  
P T3 
C’ 

= --  

Subscripts 

o =  
1 =  
2 =  
3 =  
a =  
d =  
f =  

- - S 

v =  
w =  

initial 
desorption mushy region 
dried region 
triple point 
air 
secondary desorption front 
framework 
solid skeleton; surface 
vapour 
sorbed water, or called sorbed moisture 
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