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Performance of quantum Otto refrigerators with squeezing
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The performance of a quantum Otto refrigerator coupled to a squeezed cold reservoir has been evaluated
using the χ figure of merit. We have shown that squeezing can enhance the coefficient of performance (COP)
dramatically, surpassing the Carnot COP defined by the initial temperatures of the heat baths. Furthermore,
when the squeezing parameter approaches its maximum value, the work input vanishes while the cooling rate
remains finite, in apparent contravention of the second law of thermodynamics. To explain this phenomenon, we
have shown that squeezing renders the thermal bath into a nonequilibrium state and the temperature of the bath
becomes frequency dependent. Thereby, a correlation to the Carnot COP has been deduced. The results reveal
that the COP under the maximum χ figure of merit is of the Curzon-Ahlborn style that cannot surpass the actual
Carnot COP, and is thus consistent with the second law of thermodynamics.
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I. INTRODUCTION

The optimization of real thermodynamic cycles has at-
tracted increasing attention because of fuel depletion and the
need to save energy. Refrigerators are used widely in our
everyday lives, and they operate between two heat reservoirs
at temperatures T1 and T2 (T1 > T2). The coefficient of per-
formance (COP) for a traditional refrigerator is constrained by
the Carnot limit, εC = T2/(T1 − T2), according to the second
law of thermodynamics [1]. However, in attaining the Carnot
COP, the cooling rate decreases because of the infinite cycle
duration, which is unrealistic for actual applications. Pioneered
by Curzon and Ahlborn [2], who considered the cycle duration,
many methods and models have been developed to study
practical heat devices, such as the endoreversible model,
low-dissipation model, and the irreversible model based on
the Onsager relation [3–8], and they have provided useful
results.

The maximum power output is often adopted as the main
criterion for optimizing real heat engines. For refrigerators,
however, the minimum power input is not an appropriate
optimization criterion [9], and much effort has been devoted
to optimizing refrigerators under different figures of merit.
Jiménez de Cisneros et al. [10] studied the COP at the
maximum COP figure of merit through the linear irreversible
model. By maximizing the per-unit-time COP of endorevesible
refrigerators, Velasco et al. [11] obtained the upper bound
of COP, εCA = √

εC + 1 − 1, i.e., the Curzon-Ahlborn (CA)
coefficient of performance. Yan and Chen [12] conducted
optimization with a target function εQ̇c, the χ figure of
merit for refrigerators proposed by de Tomás et al. [13],
with Q̇c being the cooling load rate of the refrigerators and
ε the COP. The χ figure of merit, defined as χ = zQin/tcycle,
becomes the maximum power and εQ̇c figures of merit for
heat engines and refrigerators, respectively. Here z is the
converter efficiency (efficiency for heat engines and COP
for refrigerators), Qin is the heat absorbed by the system,
and tcycle denotes the time duration for a cycle. Taking χ as
the target function in a low-dissipation model, Wang et al.
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[9] proposed that the COP at maximum χ was bounded
between 0 and (

√
9 + 8εC − 3)/2. Under the conditions of

symmetric dissipations, the CA coefficient of performance
may be retrieved. It has also been obtained in refrigerators
with nonisothermal processes [14].

Quantum thermodynamics offers a new way to study micro-
scopic heat devices. Based on the quantum analogs of the clas-
sical thermodynamic cycles, many quantum thermodynamic
cycles, such as the quantum Carnot cycle, Otto cycle, and the
Brayton cycles, have been constructed [15,16] and are often
studied within spin or coupled systems, harmonic oscillator
systems, and ideal quantum gases [17–19]. The literature on
quantum Otto cycles, especially for heat engines and refrig-
erators, is extensive [20–24]. In the field of thermodynamics
in small systems, an important question is the validity of the
thermodynamic laws in a system involving only a few particles.
Many investigations have been performed to reexamine the
validity of the laws and principles of thermodynamics in small
systems. Recently, Roßnagel et al. [25] studied the quantum
Otto engine coupled to a high-temperature squeezed thermal
reservoir and claimed an efficiency at the maximum power
output exceeding the Carnot efficiency. Furthermore, they also
proposed a concept to realize it experimentally. Quan [26]
studied the maximum efficiency of ideal heat engines in a
small system and proposed a working-substance-dependent
correction to the Carnot efficiency at the nanoscale. Whether
the efficiency of a heat engine can be larger than the standard
Carnot efficiency in a quantum system is still under discussion
[27–29].

Originating in quantum optics, squeezing has also been
studied in quantum thermodynamics [30–32]. However, the
use of squeezed thermal baths in quantum thermodynamics
has been largely unexplored [25]. In this work, the per-
formance of a quantum Otto refrigeration cycle coupled
to a low-temperature squeezed thermal reservoir based on
a time-dependent harmonic oscillator has been investigated
under the χ figure of merit [25], while still treating the
high-temperature reservoir as purely thermal. The model of
quantum Otto refrigerators with squeezing is described in
Sec. II. In Sec. III, we show that with the absence of squeezing,
the COP at the maximum χ figure of merit is the CA
coefficient of performance and squeezing enhances the COP
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dramatically, surpassing the Carnot COP defined by the initial
temperatures of the heat baths for large squeezing parameters.
Furthermore, we show that squeezing renders the thermal bath
into a nonequilibrium state, and in the presence of squeezing
the temperature of the bath becomes frequency dependent.
Therefore, a Carnot COP can no longer be defined by the
initial temperatures of the heat baths. The actual Carnot COP,
however, may be defined and has been deduced. The results
show that the COP under the maximum χ figure of merit is
also of the CA style, and has been shown not to exceed the
actual Carnot COP.

II. QUANTUM OTTO REFRIGERATOR WITH
SQUEEZED RESERVOIR

The quantum Otto refrigerator is the reversed form of
the heat engine cycle, shown in Fig. 1; it consists of
four consecutive processes like the traditional Otto cycle
[15,18,25,33,34]. In this paper, the working medium is a single
harmonic oscillator whose frequency is time dependent and
varies between ω2 and ω1(ω2 < ω1). The isochoric processes
can be treated as constant frequency processes. The oscillator is
coupled to two heat baths at temperatures T2 and T1(T1 > T2).
Here we introduce the two inverse temperatures β1 = 1/KBT1

and β2 = 1/KBT2, with KB the Boltzmann constant. Therefore
the Carnot coefficient of performance may be written as
εC = 1/(β2/β1 − 1). As depicted in Fig. 1, the cycle starts
in a thermal state A, at frequency ω1, and temperature T1. The
average energy,〈H 〉A = �ω1〈n(β1)〉, which is calculated based
on the quantum number distribution, reads

〈H 〉A = �ω1

2
coth

(
�ω1β1

2

)
, (1)

where � represents Planck’s constant. In the process A to B,
the frequency decreases from ω1 to ω2. The duration of this
process is τAB . It is an isentropic expansion process, whose
transformation is unitary for an isolated system and whose
von Neumann entropy is constant. The mean energy at point
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FIG. 1. (Color online) T -S diagram of the quantum Otto cycle.
The insert shows the corresponding energy-frequency diagram.
Squeezing is applied to the cold reservoir in the process B to C.

B can be calculated by solving the Schrodinger equation for
the driven quantum oscillator, which is given by [35–37]

〈H 〉B = �ω2

2
coth

(
�ω1β1

2

)
Q∗

2, (2)

where Q∗
2 is a dimensionless adiabaticity parameter in the

process, characterizing the speed of the transformation [37]. It
equals unity for an adiabatic process that is much slower than
the typical time scales of the system and increases with the
degree of nonadiabaticity. Q∗

2 = 1 for adiabatic and Q∗
2 > 1

for nonadiabatic compression or expansion.
In the process B to C, the system is coupled to a squeezed

thermal reservoir at temperature T2, where the squeezing
parameter is denoted as r . The system is then relaxed to
a nondisplaced squeezed thermal state with mean phonon
number 〈n(β2,r)〉 = 〈n〉 + (2〈n〉 + 1)sinh2r [25,30], where
〈n〉 = [exp(�ω2β2) − 1]−1 is the thermal occupation number.
We assume the duration of this interaction to be much shorter
than that of the isentropic process, and thus the frequency
remains constant. The time duration of this process is denoted
as τBC . The mean energy at point C is

〈H 〉C = �ω2

2
coth

(
�ω2β2

2

)
α, (3)

where α = 〈n(β2,r)〉/〈n〉, reflecting the change of the thermal
occupation number due to the squeezing. Similar to the
analysis in [25], the temperature of the cold bath is assumed
to be unaffected by the squeezing. After the isentropic
compression process C to D, the frequency is brought back
to its initial value ω1 and the mean energy at point D reads

〈H 〉D = �ω1

2
coth

(
�ω2β2

2

)
Q∗

1α (4)

where Q∗
1 is also a dimensionless adiabaticity parameter in the

process, characterizing the speed of the transformation in that
process of duration τCD . Q∗

1 = 1 for adiabatic and Q∗
1 > 1 for

nonadiabatic compression or expansion.
In the final isochoric process D to A, the system is coupled

to the hot thermal bath with no squeezing applied. The duration
of this process is denoted by τDA. Because of the stochastic
nature of this process, the squeezed state is thermalized in this
process. Therefore the heat absorbed from the cold-squeezed
reservoir and that released to the hot reservoir are, respectively,
given by

Qh = 〈H 〉D − 〈H 〉A = �ω1

2
coth

(
�ω2β2

2

)
Q∗

1α

− �ω1

2
coth

(
�ω1β1

2

)
, (5)

Qc = 〈H 〉C − 〈H 〉B = �ω2

2
coth

(
�ω2β2

2

)
α

− �ω2

2
coth

(
�ω1β1

2

)
Q∗

2. (6)

In Ref. [25], a realistic proposal for a quantum Otto heat
engine was conceived, which consists of a single ion confined
in a linear Paul trap and coupled to laser reservoirs. The radio
frequency electrodes that create the confining potential are
title towards the trap axis. Due to the geometry the axial
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frequency is fixed, while the radio frequency is a function
of the axial position. The bath acts on the radial modes only.
A change in the variance of the radial state of the ion leads
to a displacement in axial direction, which corresponds to the
piston in a heat engine. However, as the radial trap frequency
is much higher than the axial one, work provided for the radial
mode cannot be transferred to the axial mode. This means
that the squeezing process in the radial direction does not
perform any work resulting in axial motion. The displacement
in the axial direction is only because of a large change in
the variance of the radial motional state. The phase of the
squeezed state is scrambled each time, and without having any
information about this phase, it is impossible to extract work
in either direction. Following Ref. [25], the energy required
to maintain the squeezed state has not been considered. The
work input may accordingly be calculated as W = Qh − Qc,
along with the COP ε = Qc/W . The refrigeration rate is R =
W/τcycle, where τcycle = τAB + τBC + τCD + τDA denotes the
time corresponding to a complete cycle through the states.
According to the aforementioned literature, Q∗

1,2 � 1 [35],
where the equality holds when the isotropic processes are
adiabatic. In addition, the maximum cooling and COP occur
only in situations where Q∗

1 = Q∗
2 = 1. For simplicity, we

assume that the cycle duration is fixed and the isentropic
processes are adiabatic. Now, consider the high-temperature
limit �ωiβi � 1. Equations (5) and (6) are then reduced to

Qh = 〈H 〉D − 〈H 〉A = ω1

ω2β2
(1 + 2sinh2r) − 1

β1
, (7)

Qc = 〈H 〉C − 〈H 〉B = 1

β2
(1 + 2sinh2r) − ω2

ω1β1
. (8)

Therefore the work input may be rewritten as

W = ω1

ω2β2
(1 + 2sinh2r) − 1

β1
− 1

β2
(1 + 2sinh2r) + ω2

ω1β1
.

(9)

For a refrigerator, the heat absorbed and the work input
must be positive, i.e., Qc > 0, W > 0. Based on Eqs. (8) and
(9), we thus have

ω2

ω1
<

β1

β2
(1 + 2sinh2r), where r � arcsin h

(√
1

2εC

)
.

(10)

III. PERFORMANCE UNDER THE χ CRITERION

A. Thermal bath with squeezing: Assumption
of equilibrium state

The χ criterion can be regarded as a relatively appropriate
criterion for optimizing refrigerators [13]. This figure of merit
takes both the COP and the cooling rate into consideration.
Thus we have

χ =
1
β2

(1 + 2sinh2r) − ω2
ω1β1(

ω1
ω2

− 1
)
tcycle

. (11)

According to Eq. (11), for a prescribed cycle duration χ

attains a maximum value when the frequencies satisfy the
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FIG. 2. (Color online) Variation of COP at maximum χ figure of
merit with the squeezing parameter r where β1/β2 = 0.6.

relation

ω2

ω1
= 1 −

√
1 − β1

β2
(1 + 2sinh2r). (12)

As a result, the corresponding COP is given by

εχ = 1√
1 − β1

β2
(1 + 2sinh2r)

− 1. (13)

For the cold reservoir without squeezing (r = 0), we recov-
ered the CA coefficient of performance εCA = √

1 + εC − 1
[13,14]. According to Eq. (13), however, εχ approaches the
Carnot COP εC when r = arcsin h[

√
1/2(εC + 1)]. Provided

r is very large, the COP surpasses the Carnot COP as
shown in Fig. 2. Furthermore, when r → arcsin h(

√
1/2εC),

Qc → 1/β1 and W → 0. This implies that heat is transferred
from the low-temperature reservoir to the high-temperature
reservoir without any work input. The same phenomenon has
been demonstrated earlier as well [25]. The quantum Otto heat
engine is coupled to two thermal baths. The cold bath is an
equilibrium system while the hot bath was assumed to be a
squeezed thermal bath characterized by its temperature and
the squeezing parameter r . In that study, at a large enough
squeezing parameter the efficiency of the heat engine at
maximum power output approaches unity. It predicts that work
may be extracted from a single heat source without causing
any effects on the other. These two results seem to violate the
second law of dynamics.

B. Thermal bath with squeezing: Assumption of
nonequilibrium state

The models adopted in Ref. [25] and this paper are
based on the assumption that squeezing does not affect the
bath’s temperature. Alicki [38] argued that in the presence of
squeezing, a thermal bath is in a nonequilibrium state and
therefore its temperature will be frequency dependent. The
Carnot COP should not then be defined by the initial
temperatures of the heat baths. Consider a quantum harmonic
oscillator thermometer with its frequency weakly coupled to
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a stationary bath by means of the interaction Hamiltonian
Hint = (a + a+) ⊗ B, where a, a+ are the bosonic or fermionic
annihilation and creation operators, respectively, and B is the
bath observable. The bath drives the thermometer to a thermal
equilibrium state at the frequency-dependent temperature
T (ω,r) induced by the squeezing, which is determined by
the following relation:

exp

(
− �ω

2KBT (ω,r)

)
= G(−ω)

G(ω)
, where G(ω)

=
∫ +∞

−∞
eiωt 〈B(r,t)B(r)〉bathdt. (14)

As to the equilibrium bath, Eq. (14) is satisfied with a
fixed T (ω,r) for an arbitrary B(r) (Kubo-Martin-Schwinger
condition). By ergodic averaging, the temperature T (ω,r)
measured by the harmonic thermometer linearly coupled to
the oscillator bath is given by the formula [38]

exp

(
− �ω

KBT (ω,r)

)
= 〈n〉 + (2〈n〉 + 1)sinh2r

1 + 〈n〉 + (2〈n〉 + 1)sinh2r
, where

〈n〉 = 1

exp(�ωβ2) − 1
. (15)

According to above equation, the equilibrium tempera-
ture is T (ω,r) = T2 when r = 0. Furthermore, according to
Eq. (15), T (ω,r) increases monotonously with increasing r .
Under the high-temperature limit �ωiβi � 1, Eq. (15) reduces
to

T (ω,r) = (1 + 2sinh2r)T2. (16)

When r → arcsin h(
√

1/2εC), T (ω,r) → T1, which is in
accordance with the fact that the temperature of the cold reser-
voir cannot exceed that of the hot reservoir for a refrigerator.
The upper bound of the squeezing parameter is the same as
in Eq. (10); therefore Eq. (16) is justified. In the presence of
squeezing, the refrigerator must be considered as operating

between temperatures T (ω,r) and T1. The actual Carnot COP
should then be written as εC(r) = 1/[T1/T (ω,r) − 1]. As
T (ω,r) � T1, εC(r) � εC . Meanwhile, Eq. (13) becomes εχ =√

1 + εC(r) − 1 < εC(r), as depicted in Fig. 2. Therefore we
arrive at the conclusion that squeezing does not allow the COP
to surpass the actual Carnot COP. In addition, the COP under
the maximum χ figure of merit is still of the CA style.

IV. CONCLUSIONS

The performance of a quantum Otto refrigerator coupled to
a squeezed cold reservoir has been studied under the χ figure
of merit. We have shown that with the absence of squeezing,
the COP at maximum χ figure of merit is the CA coefficient of
performance and squeezing can enhance the COP dramatically,
surpassing the Carnot COP defined by the initial temperatures
of the heat baths for a large squeezing parameter. Furthermore,
when the squeezing parameter approaches its maximum value,
heat is directly transferred from the low-temperature reservoir
to the high-temperature reservoir without any work input, in
apparent contravention of the second law of thermodynamics.
To explain this phenomenon, we have shown that squeezing
renders the thermal bath into a nonequilibrium state. In the
presence of squeezing, the temperature of the bath is frequency
dependent. Under such circumstances, the Carnot COP should
therefore not be defined by the initial temperatures of the heat
baths. The actual Carnot COP has been deduced. The results
show that the COP under the maximum χ figure of merit is
also of the CA style and does not exceed the actual Carnot
COP, thereby demonstrating consistency with the second law
of thermodynamics.
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