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a b s t r a c t

Based on theories of thermodynamics, the energy equation in terms of entransy in heat transfer process is
introduced, which not only describes the change of entransy, but also defines the entransy consumption
rate. According to the regularity of entransy change in heat transfer process and the effect of entransy
consumption rate on the irreversibility of heat transfer process, it can be found that entransy is a state
variable, from which a new expression for the second law of thermodynamics is presented. Then by set-
ting entransy consumption rate and power consumption rate as optimization objective and constraint
condition for each other, the Lagrange conditional extremum principle is used to deduce momentum
equation, constraint equation and boundary condition for optimizing flow field of convective heat trans-
fer, which are applied to simulate convective heat transfer coupling with energy equation in an enclosed
cavity. Through the numerical simulation, the optimized flow field under different constraint conditions
is obtained, which shows that the principle of minimum entransy consumption is more suitable than the
principle of minimum entropy generation for optimizing convective heat transfer process.

� 2011 Published by Elsevier Ltd.
1. Introduction

Past centuries have witnessed the gradual perfection of classical
thermodynamics theories including irreversible thermodynamics.
The second law of thermodynamics in particular, which is regarded
as a fundamental law of physics, has found wide applications in
engineering and scientific fields. However, in the field of heat
transfer which is most closely related to thermodynamics, no
important theoretical breakthrough has been achieved to heat
transfer optimization over the past decades. The reason for this
may be that the second law of thermodynamics has not been
closely integrated with heat transfer theories in developing new
concept and methodology.

In order to evaluate the degree of heat transfer enhancement,
Guo afresh surveyed the mechanism for convective heat transfer
and proposed the field synergy principle [1,2]. This novel concept
attracted much attention of researchers [3–8]. Through their
consistent effort, a systematic assessment for performance of heat
transfer enhancement was gradually established. As we know that
to make heat exchange equipment work efficiently with high heat
transfer coefficient and lower flow resistance or lower energy
consumption, the key factor is to optimize heat transfer process.
For this purpose, Guo et al. newly proposed a new physical quan-
Elsevier Ltd.

: +86 27 87540724.
tity ‘‘entransy’’ based on the analogy between heat conduction
and electrical conduction as well as thermodynamics theories [9].
They deducted this concept theoretically and validated it through
modeling and numerical computation [10–16]. Although introduc-
tion of the concept of entransy has shown the advantages in heat
transfer optimization, it is still in its initial stage and needs to be
perfected. By resorting to the second law of thermodynamics, this
paper attempts to give new insights into the concept of entransy
which is treated as a basic physical quantity, and to reaffirm the
importance of entransy in developing optimization theories for
heat transfer process.

2. The Irreversibility of heat transfer process

The transfer of energy, momentum and mass are three main
forms of transport phenomena in the nature or engineering. Energy
takes many forms, such as thermal energy, mechanical energy,
electronic energy, optical energy, sound energy, etc. When energy
in any form other than thermal energy is transferred, a part of it
will be transformed into thermal energy, and when thermal energy
is transferred, a certain amount of it will lose or dissipate to some-
where. This is the so-called irreversibility of energy conversion and
transport processes. Therefore, in order to reduce the irreversibility
of heat transfer process, it is necessary to explore its physical
mechanism and optimize the process by quantitatively analyzing
the changes of physical quantities and recording the traces left
by these changes.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.02.041
mailto:w_liu@hust.edu.cn
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.02.041
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Nomenclature

A, B, C0 Lagrange multipliers
c specific heat [J/(kg � K)]
cp specific heat at constant pressure [J/(kg � K)]
h enthalpy [J/kg]
J, J0 functional
p pressure [Pa]
Q heat flux [W]
_Q 000 internal heat source [W/m3]
q heat flux vector [W/m2]
S entropy [J/K]
s specific entropy [J/(kg � K)]
Sg,p entropy generation induced by fluid viscosity [J/K]
Sg,T entropy generation induced by heat transfer [J/K]
T temperature [K]

t time [s]
U velocity vector [m/s]
V volume [m3]
Z entransy [J � K]
z specific entransy [J � K/kg]
Ze,T entransy consumption [J � K]

Greek symbols
k thermal conductivity [W/(m � K)]
q fluid density [kg/m3]
l viscosity coefficient [kg/(m � s)]
U dissipated heat from fluid viscosity [W/m3]
X control volume [m3]

Fig. 1. Sketch of an enclosed cavity with geometry and boundary conditions
(L = H = 15 mm).
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2.1. Thermodynamic definition of entransy and its deduction

For a non-equilibrium convective heat transfer process, its
energy equation can be expressed in terms of enthalpy as:

q
Dh
Dt
¼ �r � qþUþ _Q 000: ð1Þ

Where q is the fluid density, h is the fluid enthalpy, �r � q is the
heat flux transferring into and out of fluid elementary volume, U
is the dissipated heat from fluid viscosity, and _Q 000 is the internal
heat source.

Eq. (1) can be rewritten in terms of entropy as:

q
Ds
Dt
¼ �r � q

T

� �
þ kðrTÞ2

T2 þU
T
þ

_Q 000

T
: ð2Þ

Where s is the entropy of fluid, �r � q
T

� �
is the entropy flow transfer-

ring into and out of fluid elementary volume, kðrTÞ2

T2 is the entropy
generation rate induced by heat transfer process, U

T is the entropy
generation rate caused by the heat generation from viscous dissipa-
tion of mechanical energy, which can also be defined as analogical
entropy source, and _Q 000

T is the internal heat source in form of entropy
expression. The differential entropy for incompressible fluid can be
expressed as: ds ¼ dh

T ¼ cdT
T .

The principle of entropy generation minimization is widely uti-
lized to optimize the thermodynamics process based on the second
law of thermodynamics [17]. According to finite time thermody-
namics theory [18], the entropy generation rate induced by heat
transfer is a representation of the irreversibility of the process, so
it can be denoted as the dot product of entropy flow and force,
i.e. kðrTÞ2

T2 ¼ q
T � � rT

T

� �
, while the entropy generation rate U

T denotes
mechanical energy dissipation induced by fluid viscosity. Accord-
ingly, thermodynamic equilibrium of entropy is given as:

DS ¼ S2 � S1 ¼
Z 2

1

dQ
T
þ Sg;T þ Sg;p: ð3Þ

Where the integral term represents entropy flow, Sg,T represents en-
tropy generation induced by heat transfer, and Sg,p represents entro-
py generation induced by fluid viscosity. When boundary heat flux
is zero, entropy flow is zero. Then Eq. (3) reduces to:

DS ¼ Sg;T þ Sg;p: ð4Þ

Multiplying both sides of Eq. (2) by T2 and making transformation
yields:

qcT
DT
Dt
¼ �r � ðqTÞ � kðrTÞ2 þUT þ _Q 000T: ð5Þ
Referencing to the definition of entropy, the entransy of incom-
pressible fluid, termed z, can be defined in the following differen-
tial expression:

dz ¼ Tdh ¼ cTdT: ð6Þ

It can be seen that Eq. (6) is a differential definition for entransy
similar to thermodynamics entropy, which shows that the relation
between differential enthalpy and temperature is expressed as
product other than quotient. Thus the energy equation of convec-
tive heat transfer can be expressed in terms of entransy as:

q
Dz
Dt
¼ �r � ðqTÞ � kðrTÞ2 þUT þ _Q 000T: ð7Þ

Where z is the entransy of fluid, �r � (qT) is the entransy flow
transferring into and out of fluid elementary volume, k(rT)2 is the
entransy consumption rate induced by heat transfer process, UT
is defined as the analogical entransy source induced by dissipated
heat from fluid mechanical energy, and _Q 000T is the internal heat
source in form of entransy expression.

As we know that a state variable or parameter can be defined to
represent the state of a thermodynamics system. If the values of all
state variables of a system are known, the state of this system can
be well described. The entransy is such a variable introduced to
express the nature of a system, in which the heat is transferred from
the high to the low temperature sites. The entransy consumption
rate is induced by heat transfer temperature difference, which can
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Fig. 2. Vortex structure and optimized fields with minimum entransy consumption (C0 = �2.0 � 10�8). (a) Stream function field; (b) temperature field; (c) constraint variable
field; (d) pressure field.
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be denoted as the dot product of entransy flow and force, i.e.
kðrTÞ2 ¼ qT � � rT

T

� �
. Clearly, k(rT)2 and UT are totally different,

the former reflects the irreversibility of thermal energy transport
process, while the latter reflects the irreversibility of mechanical
energy dissipation. Since the value of UT is much less than that of
k(rT)2, it can be neglected in the case of simplification.

Corresponding to Eq. (7), thermodynamic equilibrium of en-
transy can be expressed as:

DZ ¼ Z2 � Z1 ¼ �
Z 2

1
TdQ � Ze;T : ð8Þ

Where the integral term is entransy flow, Ze,T is entransy consump-
tion. When boundary heat flow is zero, entransy flow is zero. Then
Eq. (8) reduces to:

DZ ¼ �Ze;T : ð9Þ

If the motion is excluded from consideration, the amount of vis-
cous dissipation is zero, and heat transfer process can be regarded
as pure heat conduction. Then enthalpy equation is:
q
@h
@t
¼ �r � qþ _Q 000; ð10Þ

entropy equation is:

q
@s
@t
¼ �r � q

T

� �
þ kðrTÞ2

T2 þ
_Q 000

T
; ð11Þ

and entransy equation is:

q
@z
@t
¼ �r � ðqTÞ � kðrTÞ2 þ _Q 000T: ð12Þ

Therefore we can say that, for any heat transfer process,
changes in enthalpy take place when heat flow is transported;
changes in entropy take place when entropy flow is transported,
and the changes is tracked by the entropy generation rate; changes
in entransy take place when entransy flow is transported, and the
changes is tracked by entransy consumption rate. Thus, the goal of
reducing transport process irreversibility and enlarging heat trans-
fer efficiency actually becomes to optimize entransy consumption
rate k(rT)2.
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Fig. 3. Vortex structure and optimized fields with minimum entransy consumption (C0 = �1.0 � 10�7). (a) Stream function field; (b) temperature field; (c) constraint variable
field; (d) pressure field.
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2.2. A new statement for the second law of thermodynamics

In non-equilibrium heat transfer process, both entropy and
entransy would change as variables. From Eqs. (2) and (7), we
know that entropy in an irreversible process tends to increase
while entransy changes in the opposite direction. The trace left
in a transport process over time and space takes the form of entro-
py generation rate or entransy consumption rate. The higher the
degree of irreversibility is, the larger the entropy generation rate
or entransy consumption rate would be. Therefore, entransy, sim-
ilar to entropy, is actually a state variable or parameter reflecting
the irreversibility of a transport process, from which a new state-
ment for the second law of thermodynamics would be expressed
as: entransy never increases when heat is transferred from higher
to lower temperature in non-equilibrium or equilibrium state. This
statement can be called as the principle of entransy decrease in
heat transfer process. For a system in non-equilibrium state,
entransy tends to decrease over time until the system reaches at
equilibrium state; and for a system in equilibrium state, when heat
is transferred from heat source at high temperature to heat sink at
low temperature, entransy will decrease as well.

The principle of entransy decrease corresponds to the principle
of entropy increase. It is well known that entropy is a measure of
the degree of disorder of a system in the micro-level. The larger
the entropy is, the more chaotic the microscopic motion of
molecules or particles will be. By analogy with this microscopic
explanation for entropy, entransy can be regarded as a physical
quantity measuring the degree of order of a system in the micro-le-
vel. When the entransy of a system is small, it means that the
system is not well ordered and its capability to transfer thermal
energy is not high. Conversely, an optimized system will be in good
order and will have higher heat transfer capability. We take a gas
system with high temperature as an example. When the system
transfers heat to its surroundings, the gas temperature in the
system drops, and the molecular motion in the gas becomes more
and more disordered, so that the system becomes less and less
ordered. When the gas temperature is lowered to the temperature
of surroundings, the degree of order of the system tends to be least,
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Fig. 4. Vortex structure and optimized fields with minimum entransy consumption (C0 = �5.0 � 10�7). (a) Stream function field; (b) temperature field; (c) constraint variable
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and its heat transfer capability approximates zero. The entransy of
the system will be least at this time.
3. Application of the principle of entransy decrease to heat
transfer optimization

Optimizing a heat transfer process is to reduce the irreversibil-
ity of the process by controlling the entransy consumption and the
degree of order of the system. In order to optimize flow fields in
different channels, the Lagrange conditional extremum principle
is used to construct functional. Then by functional variation and
seeking extremum, the momentum equation, constraint equation
and boundary conditions for the optimized flow field are obtained.
3.1. Optimization method

The principle of minimum entropy generation proposed for
optimizing the heat-work conversion process contributes to the
optimization of the thermal energy transport process. From Eq.
(2), one can find that the entropy generation rate is positively
correlated with temperature gradient and negatively correlated
with absolute temperature. However, Eq. (7) shows that entransy
consumption rate is only correlated with temperature gradient.
Lower entransy consumption rate ensures smaller temperature
gradient, which will even up temperature profile of the fluid,
reduce heat resistance, and thereby enhance convective heat
transfer. For the problem of heat transfer optimization, we wish
the temperature field of the fluid to be uniform. This can be
achieved by minimizing temperature gradient rT or entransy
consumption rate k(rT)2, but not by minimizing entropy
generation rate kðrTÞ2

T2 . Therefore, although both entropy genera-
tion rate and entransy consumption rate reflects the process
irreversibility, the principle of minimum entransy consumption
is more appropriate for the optimization of the heat transfer
process.

Enhancing convective heat transfer and reducing fluid flow
resistance are two aspects of improving the performance of heat
transfer equipment, but they always contradict each other.
Enhancing convective heat transfer may lead to the increase in
flow resistance, and much higher flow resistance may weaken
convective heat transfer, which implies that there exists some kind
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of synergetic relation between them. Therefore, when constructing
functional according to the Lagrange conditional extremum princi-
ple, two aspects need to be considered: (1) to set minimum en-
transy consumption rate as optimization objective and power
consumption rate as constraint condition; (2) to set minimum
power consumption rate as optimization objective and entransy
consumption rate as constraint condition.

3.2. Optimization equation for convective heat transfer

For convective heat transfer process, the fluid momentum equa-
tion is:

qU � rU ¼ �rpþ lr2U: ð13Þ

Multiplying both sides of Eq. (13) by velocity vector U yields:

�rp � U ¼ ðqU � rU � lr2UÞ � U: ð14Þ

Where �rp � U represents the work consumed by the fluid. Eq. (14)
reflects the conservation of mechanical energy, i.e. the pump power
consumed by the fluid is the sum of kinetic energy loss and viscous
dissipation power. Thus, if power consumption is small, the kinetic
energy loss and viscous dissipation power are both small in the
system. In the mean time, if the viscous dissipation can be reduced,
the irreversibility of the process will be reduced.

For a heat transfer process in any channel, if the optimization
objective is to achieve the temperature uniformity of fluid, then
with minimum entransy consumption rate and fixed power con-
sumption rate, the Lagrange function can be made by variational
calculus:

J ¼
Z

X
kðrTÞ2 þ C0ðqU � rU � lr2UÞ � U þ Ar � U
h

þ Bðkr2T � qcpU � rTÞ
i
dV : ð15Þ

Where A, B and C0 are Lagrange multipliers. Multiplier C0, thermal
conductivity k, fluid density q, specific heat cp and viscosity coeffi-
cient l are taken as constant respectively.

By finding functional variation with respect to velocity U and
temperature T respectively, the momentum equation is obtained
as:
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qU � rU ¼ �rpþ lr2U þ qcpB
C0
rT; ð16Þ

where qcpB
C0
rT denotes the virtual volume force induced to optimize

flow field, and the constraint equation of parameter B is deduced as:

qcpU � rBþ kr2B� 2kr2T ¼ 0: ð17Þ

For Eq. (17), the boundary condition at constant wall tempera-
ture is:

B ¼ 0; ð18Þ

and the boundary condition at constant heat flux is:

2krT � krB ¼ 0: ð19Þ

In addition, if the optimization objective is to reduce flow resis-
tance of the fluid, we can construct Lagrange function with mini-
mum power consumption rate and fixed entransy consumption
rate as:
J0 ¼
Z

X
ðqU � rU � lr2UÞ � U þ C0kðrTÞ2 þ Ar � U
h

þ Bðkr2T � qcpU � rTÞ
i
dV : ð20Þ

After finding functional variation with respect to velocity U and
temperature T respectively, we can have the momentum equation
as:

qU � rU ¼ �rpþ lr2U þ qcpBrT; ð21Þ

where qcpBrT represents the virtual volume force, similar to the
one in Eq. (16), and the constraint equation of parameter B as:

qcpU � rBþ kr2B� 2C0kr2T ¼ 0: ð22Þ

For Eq. (22), the boundary condition at constant wall tempera-
ture is:

B ¼ 0; ð23Þ

and the boundary condition at constant heat flux is:

2C0krT � krB ¼ 0: ð24Þ
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The coupling of above momentum equation, constraint equa-
tion and energy equation makes it possible to simulate convective
heat transfer in any channel with different boundary conditions.
Based on the simulation results, the optimal flow field structure
depending on different optimization objectives and constraint con-
ditions can be obtained to achieve the ultimate goal of enhancing
convective heat transfer and controlling fluid flow resistance,
which may guide the design for heat transfer unit and heat
exchanger.
4. Calculation and analysis for the optimized flow field in an
enclosed cavity

A 2D enclosed cavity model [19] with geometric size of
15 � 15 mm2 is shown in Fig. 1. The left and right wall tempera-
tures are constant: T1 = 300K, Th = 315K. The upper and lower walls
are in adiabatic condition: qw = 0. Normally speaking, in an
enclosed cavity with constant wall temperature or constant heat
flux, the driving force for convective heat transfer comes from
the density difference of the fluid. Buoyancy force, however, is
not included in the model we established, the fluid is driven by a
virtual volume force induced by heat transfer optimization. Thus,
by solving above controlling equations, we can inspect the effect
of virtual force field on the flow organization and optimization to
validate the model. Noting that the value of coefficient C0 is related
to the intensity of virtual force field, we find that the magnitude of
C0 value would result in different flow filed structure. In addition,
since C0 value also reflects the degree of constraint, it is restricted
to a certain range depending on the geometric size and thermal
boundary conditions. The FLUENT 6.3 is used to the simulation.
The velocity and pressure are linked using the SIMPLEC algorithm.
The convection and diffusion terms are discretized using the QUICK
scheme. The user defined function (UDF) in the FLUENT is utilized
for solving the governing Eqs. (16) and (21) respectively. The con-
vergence solutions are obtained, when the residuals of all the cou-
pled equations are less than 10�8.

Figs. 2–5 show the calculation results for the case in which min-
imum entransy consumption is set as optimization objective and
fixed power consumption as constraint condition. The cavity sizes
are chosen as non-dimension in the form of center symmetry. In
the calculation, a different value for C0 is taken. It can be found that
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with the increase in absolute value of C0, the number of vortex will
increase from one to four, and if absolute value of C0 keeps grow-
ing, more vortexes would appear as a result of growing virtual vol-
ume force. Apparently, the increase in vortex number would
intensify the fluid disturbance, which would even up temperature
profile, leading to enhancing heat transfer. Accordingly, the virtual
volume force is acting as a vortex generator in the enclosed cavity
without considering buoyancy force.

Figs. 6–9 show the calculation results for the case in which min-
imum power consumption is set as optimization objective and
fixed entransy consumption as constraint condition. It can be
found that, similar to the case in Figs. 2–5, with the increase in
absolute value of C0, the vortex number inside the enclosed cavity
will increase from one to four, and more vortexes would appear
when C0 keeps growing. By comparing the two cases, we can find
that whether the optimization objective is minimum entransy con-
sumption or minimum power consumption, the optimization re-
sults do not differ greatly. If the comparison is made closely, it
can be found that temperature distribution in the case of minimum
power consumption appears more even and heat transfer in this
case is more effective.

Fig. 10(a) shows the change curve of heat transfer capacity in
the enclosed cavity when different optimization objectives are
set. If there is no volume force acting inside, the process is pure
heat conduction with heat transfer capacity of 0.365W. If the opti-
mization objective is minimum entransy consumption, compared
to the process of pure heat conduction, heat transfer capacity in-
creases from 97% to 611%. If the optimization objective is mini-
mum power consumption, heat transfer capacity increases from
111% to 683%. Fig. 10 (b) shows the change curve of Nu number
with different optimization objective. In case of pure heat conduc-
tion, equivalent Nu number is 1. When certain optimization objec-
tive is taken, Nu number will be larger than 1, which indicates a
certain degree of heat transfer enhancement. After comparing
between Figs. 10(a) and 10(b), we find that under the same vertex
number in the enclosed cavity, heat transfer capacity with
minimum power consumption as optimization objective is greater
than that with minimum entransy consumption as optimization
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objective. This suggests that to effectively reduce flow resistance is
conducive to enhancing heat transfer.

5. Conclusions

Entransy is a state variable that measures the degree of order of a
system in which heat is transferred. Entransy consumption rate re-
flects the degree of irreversibility of heat transfer process, which can
be expressed as a dot product of entransy flow and force. The prin-
ciple of entransy decrease in heat transfer process states that
entransy would never increase when heat is transferred from higher
to lower temperature in the non-equilibrium or equilibrium state.

Since entransy consumption rate is only correlated with tem-
perature gradient of the fluid, and temperature uniformity is one
of most important objective pursued by convective heat transfer
optimization, the principle of minimum entransy consumption is
accordingly more suitable for optimizing heat transfer process
than the principle of minimum entropy generation. The lower
the entransy consumption rate is, the better the temperature uni-
formity of the flow field will be, and the less the irreversibility of
convective heat transfer process will be.

As power consumption of the fluid is both related with flow
resistance and momentum loss, to achieve minimum power con-
sumption is considered as an appropriate optimization objective.
The lower the power consumption rate is, the less the flow resis-
tance will be, and the smaller the momentum loss will be, which
leads to enhancing heat transfer.

When optimizing a heat transfer process, entransy consumption
rate and power consumption rate may not be reduced simulta-
neously. By setting minimum power consumption rate as optimi-
zation objective and entransy consumption rate as constraint
condition, better optimization results can be obtained than the
case by setting minimum entransy consumption rate as optimiza-
tion objective and power consumption rate as constraint condition,
for the parameters selected in the paper, such as Re number, geo-
metric sizes and boundary conditions, etc.
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