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The performance of micro two-level heat engines and refrigerators with prior information has been 
analyzed under the maximum power output and maximum χ figure of merit, respectively. Under the 
asymmetric limits, the Curzon–Ahlborn efficiency and Curzon–Ahlborn coefficient of performance are 
retrieved. However, they are independent of the probability distribution function of particle numbers. 
Furthermore, the results are in accord with previous literatures. They shed light on that the model 
proposed in this paper can describe any specified models with concrete prior probability distribution 
such as two-level quantum heat devices and Brownian heat devices with prior information.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The urgency for energy saving and fuel depletion has attracted 
rising attention for the optimization of real thermodynamical cy-
cles. In classic thermodynamics, Carnot efficiency ηC and Carnot 
COP εC have defined the maximum energy conversion rate for heat 
convertors operating between two heat reservoirs at temperatures 
T1 > T2 [1]. However the realization of ηC and εC leads to van-
ishing power extracted for heat engines and zero cooling load rate 
for refrigerators, since they are reached only in reversible cycles 
where all the processes are quasi-static, and the cycle time dura-
tions are infinite. The ideal Carnot cycles must be sped up to meet 
the actual demand.

Considering finite time durations of the heat transfer processes 
between heat reservoirs and working fluid, Curzon–Ahlborn [2]
proposed the concept of endoreversible Carnot heat engine, and 
deduced its efficiency at maximum power (MP) output. That is the 
groundbreaking CA efficiency ηCA = 1 − √

Tc/Th . It lay the foun-
dation for finite time thermodynamics. Many revisions of the CA 
model have been made to describe the real-life heat engines more 
accurately, and some good results at the maximum power output 
criterion have been obtained [3–7]. Furthermore, the low dissipa-
tion model [8–11] and linear and minimally nonlinear irreversible 
heat engine models described by the Onsager relations and the ex-
tended Onsager relations [12–14] have been also proposed to study 
the efficiency and its bounds at MP criterion. In these models, the 
CA efficiency is recovered under the symmetric conditions. In ad-
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dition, the efficiency at the MP criterion for stochastic Brownian 
heat engines [15] and the Feynman ratchet heat engine [16] have 
been studied further.

However for refrigerators, the minimum power input is not 
an appropriate optimization criterion [17], and much research has 
been dedicated to selecting figure of merits for optimizing refrig-
erators. by maximizing the per-unit-time COP, Velasco et al. [18]
obtained the upper bound of COP, εCA = √

εC + 1 − 1, i.e. the CA 
coefficient of performance, for endoreversible refrigerators with 
εC = Tc/(Th − Tc) being the Carnot COP, where Tc and Th are 
the temperatures of the cold and hot reservoirs, respectively. In 
addition, Yan and Chen [19] conducted the optimization with the 
objective function ε Q̇ c where Q̇ c is the cooling load rate of the 
refrigerators. To step further, de Tomás et al. [20] introduced the 
unified optimization criterion χ both for heat engines and refrig-
erators. By taking χ as the objective function, based on the low 
dissipation model, Wang et al. [17] proposed that the COP at max-
imum χ was bounded between 0 and (

√
9 + 8εC − 3)/2. Besides, 

through the minimally nonlinear irreversible refrigerator model, 
Y. Izumida et al. [21] also obtained the same bounds as those in 
Ref. [17] under the tight coupling condition. Long et al. [22] stud-
ied general refrigerators with non-isothermal processes and also 
derived the CA coefficient of performance, which was indepen-
dent of the time duration completing either process. Some new 
bounds were also reported in their later work [23]. In addition, Al-
lahverdyan et al. [24] also investigated quantum refrigerators and 
obtained some new bounds of COP under the χ figure of merit.

Furthermore, another figure of merit �, accounting for both the 
energy benefits and losses was proposed by Hernández et al. to an-
alyze heat converters [25]. Based on the � criterion, de Tomas et 
al. [26] and Long et al. [27] obtained the efficiency and COP bounds 
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for heat engines and refrigerators, respectively, through the low 
dissipation model and the minimally nonlinear irreversible model. 
The efficiencies for the stochastic heat engine cycle model and the 
nanothermoelectric engine mode have been also studied [18], The 
COP of low dissipation refrigerators with irreversibility in the adi-
abatic processes was also considered by Hu et al. [28] under the 
� criterion. Furthermore, the performance of general heat devices 
with non-isothermal processes under the � criterion were also an-
alyzed [29].

To investigate a system, we may possess some prior information 
about a parameter that is uncertain, however, the possible range of 
values are known. Furthermore, we can assign probabilities for the 
likely values of this parameter. That is the prior information, based 
on which we can make estimates about the behavior of the sys-
tem. Recently prior probability has been adopted to performance 
of the quantum and traditional heat engines under the MP cri-
terion [30–33]. And the CA efficiency has been also obtained in 
the asymmetric limits. It provides a new way for optimizing heat 
devices. In this paper, we first introduce general micro two-level 
heat engine model with prior information in Section 2. Then the 
efficiency under the MP criterion has been studied. The general 
constraint function of the efficiency has been deduced. Under the 
asymmetric limits, the CA efficiency is retrieved, which is accord 
with previous literatures. In Section 3, the COP of general refrig-
erators under the χ criterion has been also studied. Under the 
asymmetric limits, the CA coefficient of performance is also recov-
ered. Finally some concluding remarks are given.

2. Micro heat engines

Consider a two-level micro system, the particles are coupled 
with two heat baths at temperatures T1 and T2 (T1 > T2). The en-
ergy potential of the particles coupled to the hot and cold baths 
are φ1 and φ2, respectively. They are in thermodynamics equilib-
rium with the coupled baths. The probability of the particle num-
bers are assumed to be f (x), where x = φi/KBTi (i = 1, 2) and KB
is the Boltzmann constant. This assumption is in accord with the 
Bose–Einstein statistics, the Fermi–Dirac statistics in the quantum 
thermodynamics, Maxwell–Boltzmann statistics and the Brownian 
systems in the statistical thermodynamics [34–42]. All of the dis-
tribution functions share the exponent item exp(φi/KBTi). For a 
Feynman’s ratchet as a heat engine, the particle moves forward 
and backward. The particle is in contact with different reservoirs 
at different positions. f (x) is the forward/backward probability. For 
the two-level quantum system, f (x) is the occupation probabil-
ity of the quantum particles which contacts with the heat reser-
voirs. In the initial state, the energy of the particles in contact 
with the hot reservoir is Eh,int = φ1 f (φ1/T1); in the final state, 
the two systems swap between themselves their initial probabil-
ity distributions. The final energy of those particles at the end of 
the work-extracting transformation is given by Eh,fin = φ1 f (φ2/T2). 
Therefore the heat absorbed can be expressed as

Q̇ h = Eh,int − Eh,fin = φ1 R
(

f (φ1/T1) − f (φ2/T2)
)

(1)

where R is the rate constant with the dimension 1/s. Similarly, 
power extracted reads

P = φ1 R
(

f (φ1/T1) − f (φ2/T2)
) − φ2 R

(
f (φ1/T1) − f (φ2/T2)

)
(2)

For a Feynman’s ratchet as a heat engine, the particle moves 
forward and backward. The particle is in contact with different 
reservoirs at different positions. There also exists a swap operation. 
The same expressions for heat absorbed or released also hold. The 
efficiency of the system is η = (φ1 − φ2)/φ1. To start with, we as-
sume the efficiencyη is prescribed, but the exact values of φ1 and 
φ2 are not clear. Therefore, the values of φ1 and φ2 are dependent 
on each other. That is to say, for particles with φ1, there should 
exist another coupled ones with φ2. Hence the power output can 
be written as a function of either η and φ2 or η and φ1. Here we 
rewrite the power as a function of η and φ2, thus

P (η,φ2) = φ2ηR0

1 − η

(
f

(
φ2

(1 − η)KBT1

)
− f

(
φ2

KBT2

))
(3)

Furthermore, the only prior information about the parameter φ2
is that it takes positive real values in the range φ2 ∈ [φmin

2 , φmax
2 ], 

where φmax
2 and φmin

2 are respectively the upper and lower bounds 
of the particle energy potentials for φ2. Here �(φ2) denotes the 
prior distribution of particle energy potentials. Now the expected 
value of power is given by

P (η) =
φmax

2∫

φmin
2

φ2ηR0

1 − η

(
f

(
φ2

(1 − η)KBT1

)
− f

(
φ2

KBT2

))
�(φ2)dφ2

(4)

The value of P (η) strongly depends on the prior energy po-
tential distribution �(φ2). Therefore, the choosing of the prior 
distribution plays essential roles in the power output. Based on 
the Bayesian approach, Thomas and Johal [31] derived that the 
distribution of the particles with energy φ2, that is �(φ2) =
1/[φ2 ln(φmax

2 /φmin
2 )], reflecting that the particles convey lower 

energy much easier than the higher. This distribution has been 
adopted to investigate the performance of different heat engines 
[31,33]. Thereby Eq. (4) yields to

P (η) = ηR0

(1 − η) ln(φmax
2 /φmin

2 )

φmax
2∫

φmin
2

(
f

(
φ2

(1 − η)KBT1

)

− f

(
φ2

KBT2

))
dφ2

= ηR0 KB

(1 − η) ln(φmax
2 /φmin

2 )

(
A(1 − η)T1 − BT2

)
(5)

where

A =
φmax

2 /(1−η)KB T1∫

φmin
2 /(1−η)KB T1

f (x)dx (6)

and

B =
φmax

2 /KB T2∫

φmin
2 /KB T2

f (x)dx (7)

According to Eq. (6) and Eq. (7), B is independent of η, while 
generally A is not. Therefore, we can get the optimal efficiency 
(ηP ) leading to the maximum power P (η) by letting ∂ P (η)/∂η =
0. Thus we have

AT1 + η

KB(1 − η)2

[
φmax

2 f

(
φmax

2

(1 − η)KBT1

)

− φmin
2 f

(
φmin

2

(1 − η)KBT1

)]
− BT2

(1 − η)2
= 0 (8)

Eq. (8) is the general constraint function of the efficiency for 
micro heat engines with prior information under the maximum 
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Fig. 1. Efficiency at maximum expected power is plotted versus φmin
2 (scaled by T1) 

where φmax
2 /T1 = 20, T1 = 500 K and T2 = 300 K. The efficiency is also plotted 

versus φmax
2 , with φmin

2 /T1 = 0. For lower values of φmin
2 and higher values of φmax

2 , 
the efficiency approaches the CA efficiency.

power output. The efficiency depends on the probability distri-
bution function of the particle numbers and the scales of en-
ergy potentials. If they are specified, then the efficiency at the 
maximum power output can be calculated. Furthermore, provided 
φmin

2 /KBT2 → 0 and φmax
2 /KBT2 → ∞, based on the relation be-

tween φ1 and φ2, we have φmin
i /KBTi → 0 and φmax

i /KBTi →
∞ (i = 1, 2), and A = B . Thereby Eq. (8) is reduced to

T1 − T2

(1 − η)2
= 0 (9)

The solver of Eq. (9) reads

ηP = 1 − √
T2/T1 ≡ ηCA (10)

That is the CA efficiency. It has been obtained through the 
endoreversible Carnot model, linear irreversible model, low dis-
sipation model and minimally nonlinear heat engine model, and 
quantum heat engines under the symmetric conditions [8–11,43]. 
Furthermore, it is independent of the probability distribution func-
tion of particle numbers. Therefore, the results obtained in this 
paper could describe any specified models with concrete prior 
probability distribution.

For example, when the distribute function is given by f (x) =
exp(−φi/KBTi), the Feynman’s ratchet heat engine is retrieved. 
Eq. (8) can be rewritten as

T1
(
e−φmin

2 /(1−η)T1 − e−φmax
2 /(1−η)T1

)
+ η

(1 − η)2

[
φmax

2 e−φmax
2 /(1−η)T1 − φmin

2 e−φmin
2 /(1−η)T1

]

− T2

(1 − η)2

(
e−φmin

2 /T2 − e−φmax
2 /T2

) = 0 (11)

Here we set KB = 1. According to Eq. (11), we can generate the 
relation of the expected efficiency at maximum power with φmin

2
and φmax

2 , which is present in Fig. 1. The CA efficiency is also ob-
tained provided φmax

i /KBTi → ∞ and φmin
i /KBTi → 0. In Refs. [30,

31], Johal et al. have studied a quantum heat cycle in the quantum 
systems, the occupation probabilities are f (x) = 1/(exp(φi/KBTi)

+ 1). They found that the CA efficiency is also recovered under the 
asymmetric limits.
3. Micro refrigerators

Similarly to heat engines, for a micro refrigerator, the COP can 
be calculated as ε = φ2/(φ1 − φ2). And the χ figure of merit can 
be expressed as

χ = εφ2 R
(

f (φ2/KBT2) − f (φ1/KBT1)
)

(12)

Now consider a situation in which the energy scales φ1 and 
φ2 are only given by a prior distribution which a prescribed effi-
ciency ε. Therefore with ε = φ2/(φ1 − φ2), Eq. (12) can be rewrit-
ten as a function of φ2, that is

χ(ε,φ2) = εφ2 R

(
f (φ2/KBT2) − f

(
ε + 1

ε
φ2/KBT1

))
(13)

The only prior information about the parameter φ2 is that it 
takes positive real values in the range φ2 ∈ [φmin

2 , φmax
2 ]. We as-

sume the same prior �(φ2) can also be applied. The expected value 
of χ is given by

χ̄ (ε)

=
φmax

2∫

φmin
2

εφ2 R

(
f (φ2/KBT2) − f

(
ε + 1

ε
φ2/KBT1

))
�(φ2)dφ2

= R KB

ln(φmax
2 /φmin

2 )

(
BεT2 − Aε2T1

ε + 1

)
(14)

We can get optimal COP (εχ̄ ) leading to the maximum χ̄ (ε)

by letting ∂χ̄/∂ε = 0. Under the conditions φmin
i /KBTi → 0 and 

φmax
i /KBTi → ∞, we have

T2 − 2ε + ε2

(ε + 1)2
T1 = 0 (15)

The solver of Eq. (15) gives the COP at the maximum χ crite-
rion

εχ̄ = √
1 + εC − 1 ≡ εCA (16)

That is the CA coefficient of performance, which has been ob-
tained through the endoreversible Carnot model, linear irreversible 
model low dissipation model and minimally nonlinear model un-
der the symmetric conditions [17,20,21]. It is also independent of 
the probability distribution function of particle numbers. There-
fore, the results obtained in this paper could describe any spec-
ified micro refrigerators with concrete prior probability distribu-
tion. In Ref. [44], Feynman’s ratchet refrigerator with prior infor-
mation was studied, the backward and forward probabilities are 
f (x) = exp(−φi/KBTi), the CA coefficient of performance is also 
retrieved provided φmax

i /KBTi → ∞ and φmin
i /KBTi → 0.

4. Conclusions

In this paper, the general micro heat engines and refrigerators 
with prior information have been analyzed under the maximum 
power output and maximum χ figure of merit, respectively. Jef-
freys prior distribution has been adopted to the average power 
output for heat engines and χ figure of merit for refrigerators. And 
some important results have been obtained:

1. For heat engines, the constraint function of the efficiency 
at MP has been proposed. Under the asymmetric limits 
φmax

i /KBTi → ∞ and φmin
i /KBTi → 0, the CA efficiency is re-

trieved. And it is independent of the probability distribution 
function of particle numbers.
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2. For refrigerators with prior information, the CA coefficient of 
performance is also obtained under the asymmetric limits. It 
does not depend on the probability distribution function of 
particle numbers.

The obtained results are also compared with those by the quan-
tum and Brownian heat devices with prior information. It turns out 
that the model proposed in this paper can describe any specified 
models with concrete prior probability distribution. The average 
performance of micro heat engine/refrigerator models with prior 
information are equal to that of the traditional micro ones if the 
energy potentials obey the Jeffreys prior and minimum and maxi-
mum values of energy potentials fulfill the asymmetric limits. This 
paper could offer a more insightful perspective to study micro heat 
engines and refrigerators.
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