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Phonon heat conduction in micro- and nano-core-shell structures
with cylindrical and spherical geometries
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This study examines the definition of temperatures at interfaces and within thin films when the
phonons are in nonequilibrium, and provides a general solution for the temperature distribution
within the micro- and nanocylindrical and spherical shells. By applying the Boltzmann transport
equation and the established methods of thermal radiation heat transfer, analytical solutions for the
temperature distribution and equivalent thermal conductivity are obtained for micro- and
nanocylindrical and spherical shells. The study shows that significant drops in temperature occur at
the interfaces of micro- and nanocylindrical and spherical shells. For cylindrical shells, the effective
thermal conductivity is determined by both the film thickness and the diameter of the inner cylinder.
For spherical shells, the effective conductivity is mainly determined by the size of the inner sphere.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1556566#

I. INTRODUCTION

Heat conduction in dielectric or semiconductor thin films
has attracted intensive attention in the last decade. It is now
well accepted that when the film thickness becomes compa-
rable to, or smaller than, the phonon mean free path, the size
effect and interface effect become significant, and the Boltz-
mann transport equation should be and can be applied to
describe phonon transport. In Refs. 1–6 are some examples
on phonon heat conduction in thin film heterostructures and
superlattices.

It should be noted that all the previous studies have
largely focused on planar thin films. Nonetheless, a wide
range of micro- and nanoscale thermal problems is associ-
ated with nonplanar geometries such as spherical and cylin-
drical media, and they have not been studied. With the rapid
growth of research and development of nanomaterials and
nanostructures,7 understanding of heat transfer in micro- and
nanocylindrical and spherical media becomes important. Ex-
amples include semiconductor nanowires coated with a re-
dox layer8 and carbon-sheathed nanowires,9 and three-
dimensional microstructures.10 In these devices and
structures, the nano- and microcylinders are coated with an-
other thin layer of materials. SiO2-coated Fe nanoparticles11

and oxide capped CdSe nanoparticles12 are good examples of
nanosized core-shell structures.

The object of the present study is a thin shell sandwiched
between two concentric cylinders and spheres, representing
nonplanar structures mentioned above~shown in Fig. 1!. For
those micro- and nanostructures, the size effect of thermal
conductivity is dependent on structural geometries within the
Casmir limit.13 The nonequilibrium phonons are first dis-

cussed, and the definition of temperatures at interfaces is
then examined. By applying the Boltzmann transport equa-
tion and established methods of thermal radiation heat trans-
fer, an analytical solution for the temperature distribution and
equivalent thermal conductivity is obtained. The study shows
that significant drops in temperature occur at the interfaces,
and the phonon transmission and reflection is the dominant
factor for determining the equivalent thermal conductivity of
micro- and nanocylindrical and spherical media.

II. PHYSICAL MODELS AND METHODS OF SOLUTION

Consider a micrometer to nanometer scale medium with
cylindrical and spherical geometry, shown in Figs. 1~a! and
1~b!. The object of this study is the layer between the core
and the sheaths—the inner cylinder and the outer cylinder in
Fig. 1~a!, and the inner sphere and the outer sphere in Fig.
1~b!. To include the effect of the core on heat conduction
inside the film and thermal boundary resistance, while ex-
cluding the complication of the heat conduction process in
the bulk core material, it is assumed that phonons are emitted
at uniform temperature from the core and the sheath and
travel towards the interface. These phonons can be thought
of as coming from the core side within one mean free path.4

Phonon transport in the core or the sheath beyond one mean
free path can be treated based on Fourier heat conduction
theory. This study mainly deals with phonon transport, and
details of the phonon scattering mechanism are omitted and
represented by an average mean free path.2–4 Under these
approximations, and with the intensity representation,2 the
Boltzmann transport equation can be written as

m
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whereI is the total phonon intensity,I 0 the equilibrium pho-
non intensity approximated as

I 05
1

4p
Cn~T2Tref!1I ref

0 . ~2!

whereL is the phonon average mean free path,u the polar
angle,f the azimuthal angle,m ~5cosu! the directional co-
sine, I ref

0 the equilibrium phonon intensity at the reference
point,C the specific heat, andn the magnitude of the phonon
group velocity. It should be emphasized that Eq.~2! is valid
only whenC is temperature independent, and the tempera-
ture in Eq.~2! may represent a highly nonequilibrium situa-
tion and it is best regarded as a quantity that represents the
local total phonon energy.

The above equations are the same as thermal radiation
equations with isotropic scattering. The solutions are well
documented in the literature on heat transfer.14,15 The exact
solutions are, however, quite complicated even for simplified
cases. Instead, some approximate solutions are generally
used. One method used most is the optically thick approxi-
mation coupled with Deissler’s jump boundary conditions.
The solution is close to the exact solution for planar
geometries.14,15 The same results apply to phonon transport
around nanoparticles.16 It also has been shown that the opti-
cally thick approximation gives almost the same results as
those by directly solving the Boltzmann transport equation
for both electrons and phonons.4,17The basic idea behind this
approach is the diffusion or quasiequilibrium approximation
within the medium.

In thermal radiation, it is believed that the diffusion ap-
proach works for planar structures, but not for other struc-
tures including cylindrical and spherical shapes.15 Phonon
transfer in thin films with cylindrical and spherical geom-
etries is, however, a special case for a general solution of the
thermal radiation transport equation or the Boltzmann trans-
port equation in cylindrical and spherical coordinates: The

phonon scattering rate is fixed, and so is the mean free path;
whereas, in thermal radiation the optical path length is deter-
mined by both the photon radiation mean free path and the
gap between the two concentric cylinders and spheres. Equa-
tions~9–57! in Ref. 14 demonstrate that when the gap is zero
or close to zero (r 15r 2 , or r 1→r 2), the diffusion approxi-
mation works for thermal radiation in the medium between
two concentric cylindrical spheres. For phonon transport in
thin films, r 1→r 2 , which allows the diffusion approximation
to work. Calculation results in Sec. III further validate the
approximation. Here in Sec. II, we establish the analytical
formulation for phonon transport.

By applying the diffuse approximation, quasiequilibrium
phonon distribution in the film, the phonon intensity within
nanocylindrical media can be expressed as

I 5I 02sinuFcosf
]I 0~r !

]r
2

sinf

r

]I 0~r !

]f GL
5I 02sinu cosf

]I 0~r !

]r
. ~3!

This equation applies for both the micro- and nanomedium
and the outer layer and the inner layer surrounding the me-
dium. The heat flux along the radial direction is

q~r !5E
0

2p

IdV r

5E
0

2p

I sinu cosfdV5E
0

2p

I sin2 u cosfdudf

522E
f50

2p

cos2 fdfE
0

p

sin3 udu•L
dI0

dr

52
4p

3
L

dI0

dr
52

1

3
CvL

dT

dr
. ~4!

This is nothing but Fourier’s law. The difference compared to
the traditional way of applying Fourier’s law comes from the
boundary conditions.

As shown in Fig. 2, at interfaces, phonons can be trans-
mitted into another material and can also be reflected back to

FIG. 1. ~a! Coordinates for cylindrical
symmetry;~b! coordinates for spheri-
cal symmetry.
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the emitter itself. As a result of phonon transmission and
reflection, there exists an equilibrium phonon temperature
Ti , whereasTei is the temperature of the emitting phonons.
The heat flux across the interface atr 5r 1 in Fig. 2 can be
written as

q~r 1!5E t12I 1~r 1!dV r2E t21I ~r 1!dV r , ~5!

whereI 1 is the effective equilibrium phonon intensity in the
reservoir~core!, and t i j is the transmissivity. Note that the
solid angle (dV) in the r direction isdV r5sinu cosfdV,
andV r5@0,2p#, or f5@2p/2,p/2#, u5@0,p#. The principle
of energy balance, i.e., the net heat flux, must be zero when
I 1(r 1)5I (r 1), leads to the following expression:

E t12I 1~r 1!dV r5E t21I ~r 1!dV r .

Therefore, Eq.~5! can be written as

q~r 1!5E t21@ I 1~r 1!2I ~r 1!#dV r . ~6!

Substituting Eq.~3! into Eq. ~6! for both I 1(r 1) and I (r 1)
and noticing the opposite direction of the coordinates for
them yields

q~r 1!5E t21@ I 1
0~Tr 5r 1

!2I 0~Tr 5r 1
!#dV r

1L
dI1

0

dx E t12sinu cosfdV r

1L
dI0

dx E t21sinu cosfdV r , ~7!

or

S 12
t128 1t218

2 Dq~r 1!5
Cvt219

4
~T12Tr 5r 1

!, ~8!

where the average transmissivitiest128 , t218 , andt219 are de-
fined as

t218 5
3

2p E
0

p

t21sinu cosfdV r ,

t128 5
3

2p E
0

p

t12sinu cosfdV r , ~9!

t219 5
1

p E
0

p

t21dV r . ~10!

Similarly, at r 5r 2 , one can have

S 12
t238 1t328

2 Dq~r 2!5
Cvt329

4
~Tr 5r 2

2T2!. ~11!

Let q(r ) be the net heat flux at any radial locationr. The
total net radial heat transferQ in the radial direction per unit
length of the cylinder is

Q52prq~r !5const. ~12!

Then Eq.~4! can be rearranged as

dT

dr
52

3

CvL

Q

2pr
. ~13!

Integrating this equation gives

T~r !2T~r 1!52
3

2p

Q

CvL
lnS r

r 1
D , ~14a!

T~r 2!2T~r 1!52
3

2p

Q

CvL
lnS r 2

r 1
D . ~14b!

Equations~8! and ~11! can be rearranged as

T~r 1!5T12
4

Cvt219
S 12

t218 1t128

2 D Q

2pr 1
, ~15a!

T~r 2!5T21
4

Cvt239
S 12

t238 1t328

2 D Q

2pr 2
, ~15b!

Combining Eqs.~14b!, ~15a!, and~15b! results in

FIG. 2. Phonon transport at one interface:~a! incident, reflected, and transmitted phonons and~b! the temperature on each side of the interface.
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Qcylinder5

1

3
CvL~T12T2!•~3pr 1/2L!

@12~t218 1t128 !/2#/t219 1@12~t238 1t328 !/2#/t239 •r 1 /r 21~3r 1/4L!ln~r 2 /r 1!
. ~16!

For bulk materials, the third term@(3r 1/4L)ln(r2 /r1)# in the denominator dominates sincer 1@L, and Eq.~16! reduces to
traditional Fourier law. The other two terms are important when the core cylinder has a diameter comparable to the mean free
path or when the shell layer thickness is comparable to the mean free path. In the same way, the heat flux for concentric
spherical micro- and nanomedia can be written as

Qsphere5

1

3
CvL~T12T2!•~3pr 1

2/L!

@12~t218 1t128 !/2#/t219 1@12~t238 1t328 !/2#/t239 •r 1
2/r 2

213r 1/4L@12~r 1 /r 2!#
, ~17!

whereQsphere54pr 2q(r ) is the total heat flux. The temperature distribution can then be found by using Eqs.~14! and~15! for
cylindrical media. The same methods apply to spherical media. The equivalent thermal conductivity for the cylindrical and
spherical media can be derived from

Q5
2pkeff~T12T2!

ln~r 2 /r 1!
~cylindrical media!, ~18a!

Q5
4pkeffr 1~T12T2!

12r 1 /r 2
~spherical media!. ~18b!

keffIcylinder

kbulk
5

3r 1/4L

$@12~t218 1t128 !/2#/t219 1@12~t238 1t328 !/2#/t239 •~r 1 /r 2!%/@ ln~r 2 /r 1!#1~3r 1/4L!
, ~19!

keffIsphere

kbulk
5

3r 1/4L

$@12~t218 1t128 !/2#/t219 1@12~t238 1t328 !/2#/t239 •~r 1
2/r 2

2!%/@12r 1 /r 2#1~3r 1/4L!
. ~20!

Note that whenr 15r 2 , Eqs.~16! and ~17! give the correct
calculation for heat flux, which is determined by the thermal
boundary resistance at the interface. In this situation, the
equivalent thermal conductivity is zero, because the thermal
resistance has a finite value, but the thickness of the layer is
zero.

III. RESULTS AND DISCUSSION

In optical fibers, the core is generally made of silicon
dioxide or silicates; the cladding is made of another type of
glass; and the waveguides are coated with polymer. As an
example of calculation, a system of silicon dioxide as the
core and silicon as the nanomedium is studied here. This is
different from the real structure, but it gives a clearer com-
parison. The physical properties are provided in Table I. The
other important parameters are the transmittances oft i j at
interfaces. This can be very complicated if the surface is
partially specular and partially diffuse.3,4 In this calculation,
the interfaces are assumed to be totally diffuse. The transmis-
sivity is t i j 5(Cjv j /Civ i1Cjv j ).

18

Figures 3~a!–3~d! show the distribution of the dimen-
sionless equilibrium temperature,Q5(T2T1)/(T22T1) for
cylindrical and spherical media. Large drops in temperature
occur at the interface due to the dissimilarity of the two
materials when the thickness of the layer studied~thin film!
and the size of the inner cylinder and sphere are smaller than
or comparable to the mean free path@Figs. 3~a! and 3~b!#.
When the thickness of the layer studied~thin film! and the
size of the inner cylinder and sphere are larger than the mean
free path@Figs. 3~c! and 3~d!#, the temperature distribution is
very close to that predicted by Fourier’s law. This validates
the approximation method in the study. The deviation from
Fourier’s law shows the propensity for nonequilibrium of the
phonons. In this situation, the equivalent temperatures for the
phonons are defined so as to represent the energy level.
Within the film, continuation of the equivalent temperature
or the phonon energy level demonstrates the uniformity or
homogeneity of the materials structure.

When the film thickness is small compared to the mean
free path, the phonon energy in the film is mainly determined
by the incoming phonons transmitted through the interfaces
which generates temperature discontinuity at the interface
@Figs. 3~a! and 3~b!#. When the film thickness is large,
phonons are at local equilibrium and isentropic in all direc-
tions, and the phonon energy level or the temperature is con-
tinuously distributed over the whole structure@Figs. 3~c! and
3~d!#.

Figures 4~a! and 4~b! show the normalized thermal con-
ductivity as a function of the normalized diameter of the

TABLE I. Parameters used in the calculation~from Ref. 16!.

Specific heat
(3106 J/m3 K)

Group velocity
~m/s!

Mean free path
~Å!

Density
~kg/m3!

SiO2 1.79 4100 6 2278
Si 1.64 6533 430 2330

4166 J. Appl. Phys., Vol. 93, No. 7, 1 April 2003 T. Zeng and W. Liu
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cylinder and of the sphere for different film thicknesses (d
5r 22r 1). Not surprisingly, the equivalent thermal conduc-
tivity approaches the value for bulk materials as the diameter
increases. Figures 5~a! and 5~b! plot the equivalent thermal
conductivity as a function of the film thickness for different
diameters of the cylinders and spheres. It is interesting to
note that when the diameter of the inner layer is very large
~for example,r 1 /L5100), the equivalent thermal conduc-
tivity is basically independent of the film thickness, and it is
very close to the value of the corresponding bulk materials.

In comparing Figs. 4~a! and 5~a!, one finds that the effective
thermal conductivity of cylindrical media is determined by
both the diameter of the inner cylinder and by the thickness
of the cladding layer, whereas for the spherical structure, the
effective thermal conductivity is mainly dependent on the
size of the inner particle, and the thickness of the cladding
layer is a second-order factor@Figs. 4~b! and 5~b!#. One can
thus let r 2@r 1 and concentrate on studying the effect of
sphere size. Whenr 2@r 1 , Eq. ~20! reduces to

FIG. 3. Distribution of dimensionless temperatures in~a! cylindrical and~b! spherical media of thin films withr 2 /r 152 and~c! cylindrical and~d! spherical
media for bulk films withr 2 /r 15100.

FIG. 4. Effective thermal conductivity for~a! cylindrical and~b! spherical media as a function of the diameter of the inner cylinder and the sphere.
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keff

kbulk
5

3r 1/4L

@12~t218 1t128 !/2#/t21- 13r 1/4L
. ~21!

Furthermore, when@12(t218 1t128 )/2#/t21- 51, Eq. ~21! be-
comes

keff

kbulk
5

3r 1/4L

113r 1/4L
. ~22!

This is the same expression as that in Chen’s paper,16

where Eq.~22! is presented by experience fitting without
justification. As has been shown, Eq.~22! is only a special
situation for Eq.~21!. Nonetheless, for this special situation,
Chen’s study16 showed that Eq.~22! provides almost the
same results as that by the exact solution. This also validates
the approximation in this study. The general validation of the
method is as follows.

Diffusion approximation coupled with Deissler’s jump
boundary condition is a proven method for thermal radiation
in planar geometries.15 However, it is generally believed that
this method is not applicable for thermal radiation in cylin-
drical and spherical geometries. Its failure is demonstrated
by Fig. 13-1 in Ref. 15. When the absorption coefficientk
approaches zero, and so does the optical thickness, the non-
dimensional heat flux approaches zero instead of one, the
correct limit. On the other hand, if one fixes the absorption
coefficient while letting the space~layer! thickness approach
zero, one obtains the correct limit. In other words, if the layer
thickness is finite while the absorption coefficient approaches
zero, the approximation is invalid. If the absorption coeffi-
cient is fixed while the layer thickness approaches zero, the
approximation is valid. For phonon thermal conduction, the
mean free path is fixed, in other words, the absorption coef-
ficient is fixed. The approximation method, diffusion in the
layer while the jump condition is at the interface, is therefore
valid for phonon thermal conduction.

IV. CONCLUSIONS

This work has presented a theoretical study on phonon
heat conduction in nano- and microthin films with cylindrical

and spherical geometries. It defines heat conduction based on
equilibrium temperatures at the interfaces and within the
films. An approximation method, diffusion approximation or
quasiequilibrium within the film, coupled with the jump
boundary conditions, is applied to solve the Boltzmann trans-
port equation for phonons. The method is validated by its
approaching the limit to Fourier’s law when the size of the
cylinder and the sphere is in the range of that of bulk mate-
rials. It is further verified by investigating the optically thick
approximation used in thermal radiation. Calculations show
that a significant drop in temperature occurs at the interfaces
for micro- and nanocylindrical and spherical media. For cy-
lindrical media, the effective thermal conductivity is deter-
mined by both the film thickness and the diameter of the
inner cylinder. For spherical media, the effective conductiv-
ity is mainly determined by the size of the inner sphere.
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