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Phonon heat conduction in micro- and nano-core-shell structures
with cylindrical and spherical geometries

Taofang Zeng®
Mechanical and Aerospace Engineering Department, North Carolina State University,
Raleigh, North Carolina 27695
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This study examines the definition of temperatures at interfaces and within thin films when the
phonons are in nonequilibrium, and provides a general solution for the temperature distribution
within the micro- and nanocylindrical and spherical shells. By applying the Boltzmann transport
equation and the established methods of thermal radiation heat transfer, analytical solutions for the
temperature distribution and equivalent thermal conductivity are obtained for micro- and
nanocylindrical and spherical shells. The study shows that significant drops in temperature occur at
the interfaces of micro- and nanocylindrical and spherical shells. For cylindrical shells, the effective
thermal conductivity is determined by both the film thickness and the diameter of the inner cylinder.
For spherical shells, the effective conductivity is mainly determined by the size of the inner sphere.
© 2003 American Institute of Physic§DOI: 10.1063/1.1556566

I. INTRODUCTION cussed, and the definition of temperatures at interfaces is
then examined. By applying the Boltzmann transport equa-

Heat conduction in dielectric or semiconductor thin films .

has attracted intensive attention in the last decade. It is nO\R'Pn and established methods of thermal radiation heat trans-

well accepted that when the film thickness becomes compa{?r’ an analytical solution for the temperature distribution and
rable to, or smaller than, the phonon mean free path, the si guivalent thermal conductivity is obtained. The study shows

effect and interface effect become significant, and the Boltz'E at significant drops in temperature occur at the interfaces,

mann transport equation should be and can be applied §nc: thf pgotnon .trgnsmlssmn. ar:d rtetfrllectlor: IS tge dtpTlnalfnt
describe phonon transport. In Refs. 1-6 are some exampl getorfor determining the equivalent thermal conductivity o

on phonon heat conduction in thin film heterostructures and'cro- and nanacylindrical and spherical media.
superlattices.

It should be noted that all the previous studies have" PHYSICAL MODELS AND METHODS OF SOLUTION
largely focused on planar thin films. Nonetheless, a wide  Consider a micrometer to nanometer scale medium with
range of micro- and nanoscale thermal problems is assoceylindrical and spherical geometry, shown in Figéa)land
ated with nonplanar geometries such as spherical and cylirk(b). The object of this study is the layer between the core
drical media, and they have not been studied. With the rapidnd the sheaths—the inner cylinder and the outer cylinder in
growth of research and development of nanomaterials anBig. 1(a), and the inner sphere and the outer sphere in Fig.
nanostructure$understanding of heat transfer in micro- and 1(b). To include the effect of the core on heat conduction
nanocylindrical and spherical media becomes important. Exinside the film and thermal boundary resistance, while ex-
amples include semiconductor nanowires coated with a regluding the complication of the heat conduction process in
dox layef and carbon-sheathed nanowifesnd three- the bulk core material, it is assumed that phonons are emitted
dimensional microstructuré§. In these devices and at uniform temperature from the core and the sheath and
structures, the nano- and microcylinders are coated with artravel towards the interface. These phonons can be thought
other thin layer of materials. SiGcoated Fe nanoparticlds  of as coming from the core side within one mean free fath.
and oxide capped CdSe nanopartitiese good examples of Phonon transport in the core or the sheath beyond one mean
nanosized core-shell structures. free path can be treated based on Fourier heat conduction

The object of the present study is a thin shell sandwichedheory. This study mainly deals with phonon transport, and
between two concentric cylinders and spheres, representirgetails of the phonon scattering mechanism are omitted and
nonplanar structures mentioned abgskown in Fig. 1. For  represented by an average mean free pattunder these
those micro- and nanostructures, the size effect of thermalpproximations, and with the intensity representafidhe
conductivity is dependent on structural geometries within theBoltzmann transport equation can be written as
Casmir limit®® The nonequilibrium phonons are first dis- g 1w ol 19—
,U,E‘f‘ r'u @: A (in spherical coordinates
¥Electronic mail: tzeng2@unity.ncsu.edu (1a
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T4 T2 FIG. 1. (a) Coordinates for cylindrical
symmetry; (b) coordinates for spheri-

]
r 4
/)
; ~ 2
—\ cal symmetry.

(a) (b)
' al(r,0,¢) sing al(r,6,d) phonon scattering rate is fixed, and so is the mean free path;
sin 6| cos¢ or r i whereas, in thermal radiation the optical path length is deter-

mined by both the photon radiation mean free path and the
B 10—1 o _ gap between the two concentric cylinders and spheres. Equa-
= —4(in cylindrical coordinatek (1D {ions(9-57) in Ref. 14 demonstrate that when the gap is zero
. . . . or close to zeror(;=r,, orry—r,), the diffusion approxi-
wherel is the total phonon intensity,’ the equilibrium pho- 1 ion \works for thermal radiation in the medium between
non intensity approximated as two concentric cylindrical spheres. For phonon transport in
o 0 thin films,r,—r,, which allows the diffusion approximation
1= Cv(T = Tred) et (2)  to work. Calculation results in Sec. Ill further validate the
) approximation. Here in Sec. Il, we establish the analytical
where A is the phonon average mean free patihe polar  formulation for phonon transport.

sine, I ¢ the equilibrium phonon intensity at the reference phonon distribution in the film, the phonon intensity within
point, C the specific heat, andthe magnitude of the phonon nanocylindrical media can be expressed as

group velocity. It should be emphasized that E).is valid
only whenC is temperature independent, and the tempera-

al%(r) sing a1%(r)

| =1%—sin 6| cos¢

ture in Eqg.(2) may represent a highly nonequilibrium situa- ar r ad
tion and it is best regarded as a quantity that represents the o)
al=(r
local total phonon energy. o — 1%~ sinf cose ( _ 3)
The above equations are the same as thermal radiation ar

equations with isotropic scattering. The solutions are well_ , , ) )
documented in the literature on heat trandféf The exact NS equation applies for both the micro- and nanomedium

solutions are, however, quite complicated even for simplifie"d the outer layer and the inner layer surrounding the me-
cases. Instead, some approximate solutions are generafum- The heat flux along the radial direction is

used. One method used most is the optically thick approxi- o

mation coupled with Deissler’s jump boundary conditions. q(r)=f 1dQ,

The solution is close to the exact solution for planar 0
geometries*!° The same results apply to phonon transport 2
around nanoparticle$.It also has been shown that the opti- —f
cally thick approximation gives almost the same results as

2
I sinacos¢dQ=J | sir? 6 cos¢d fd ¢

0 0

those by directly solving the Boltzmann transport equation 27 m di°
for both electrons and phonof$’ The basic idea behind this == ZJ cos’ ¢>d¢f sin® 6d6- A ar
approach is the diffusion or quasiequilibrium approximation ¢=0 0
within the medium. 47 dI° 1 dT
In thermal radiation, it is believed that the diffusion ap- == ?AWZ - §CvA ar 4)

proach works for planar structures, but not for other struc-

tures including cylindrical and spherical shapg$?honon  This is nothing but Fourier’s law. The difference compared to
transfer in thin films with cylindrical and spherical geom- the traditional way of applying Fourier’s law comes from the
etries is, however, a special case for a general solution of thieoundary conditions.

thermal radiation transport equation or the Boltzmann trans- ~ As shown in Fig. 2, at interfaces, phonons can be trans-
port equation in cylindrical and spherical coordinates: Themitted into another material and can also be reflected back to
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FIG. 2. Phonon transport at one interfa¢a: incident, reflected, and transmitted phonons éndhe temperature on each side of the interface.

the emitter itself. As a result of phonon transmission and . 3 (= _
reflection, there exists an equilibrium phonon temperature le=zf0 T128IN 0 cosgd(),, 9
T;, whereasT; is the temperature of the emitting phonons.
The heat flux across the interfaceratr, in Fig. 2 can be L
written as " i
7'21:; 0 TZler . (10)
A= [ masirod0,~ [ miepdo, @

Similarly, atr=r,, one can have

wherel, is the effective equilibrium phonon intensity in the
reservoir(corg, and 7;; is the transmissivity. Note that the (1 Tost T30

Cus,
solid angle () in ther direction isdQ,=sindcos¢d(, 5 |42 = —— (Tr=r, = Ta). (11)
and(),=[0,27], or ¢p=[—7/2,7/2], 6=[0,7]. The principle
of ene_rgy balance, i.e., the net heat flux, mgst _be ZEro Whel'jet g(r) be the net heat flux at any radial locationThe
l1(r1)=1(ra), leads to the following expression: total net radial heat transf€) in the radial direction per unit

length of the cylinder is

| raurnan,= [ zapdo,.

Q=2mrq(r)=const. (12
Therefore, Eq(5) can be written as

Then Eq.(4) can be rearranged as

Q(rl):f Tl 11(ry) —1(r)]dQ, . (6)
dT 3 0
Substituting Eq.(3) into Eq. (6) for both 1,(r,) and1(r,) ot Coh 2ar (13
and noticing the opposite direction of the coordinates for
them yields Integrating this equation gives
A= [ 71T = 1%T, 2,10, 3 0 (r
Lo T(r)_T(rl)__ECvAln ) (143
+A— T12SIN 0 coSpd ),
o T Try=—— -2 (2 14b
dlo - (rz)_ (rl)__ECUA n E ( )
+A&f T51SIN 6 coSpd ), , (7)
Equations(8) and(11) can be rearranged as
or
Tipt Ty v Ty .4 B Tt | Q
(1— > A= —7—(Ti=Troy)), (8) T(ry)=T, ngl(l 2 | 2mry (158
where the average transmissiviti€s,, 75,, and 75, are de- b
fined as T(ry)=T,+ 1— Tat 72| Q (15b
2 2 Cuv 7q 2 27ry’

3 T
rélz—f T,1Sin 0 cospd ), , . _
27 Jo Combining Eqs(14b), (158, and(15b) results in
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B 3

Qeinder™ [ (77 5 71211 7o+ [ 1— (7ot 7 12)I 7oy 111 5 (3T AN IN(r 5 /1)
For bulk materials, the third terfjn(3r,/4A)In(r,/r;)] in the denominator dominates since> A, and Eq.(16) reduces to

traditional Fourier law. The other two terms are important when the core cylinder has a diameter comparable to the mean free

path or when the shell layer thickness is comparable to the mean free path. In the same way, the heat flux for concentric

spherical micro- and nanomedia can be written as

1

~ 3

Qeperé™ [1— (Thy+ 71)/2)] T+ [ 1= (hat T5)12]1 Tyge 3/ 5+ 3r /AN [1— (11 /1 )]’

whereQgphere 47r2q(r) is the total heat flux. The temperature distribution can then be found by using1Byand(15) for

cylindrical media. The same methods apply to spherical media. The equivalent thermal conductivity for the cylindrical and
spherical media can be derived from

_ 27Ke(T1—Tp)

CoA(T;—T,)-(37r1/2A)

(16)

CuA(T{—T,)-(37r2/A)

17

In(r,7ry) (cylindrical media, (18a
Aqkegr (T —T
_ e 1T 2)(spherical medip (18b)
1_r1/r2
keff_cylinder: 3ry/4A (19
Kpulk {[1= (7oq+ 71 12)] 751+ [ 1= (75t 73912 795 (r 1 /T ) [ IN(r o /v 1) ]+ (3r1/4A)
keff_sphere: 3r 1/4A (20)
Kouk (1= (o1t 700120 Tyt [1= (Thgt 731211 7oy (rE/T )M L —11 /1] +(3r1/4A)
|
Note that wherr;=r,, Eqgs.(16) and (17) give the correct Figures 3a)—3(d) show the distribution of the dimen-

calculation for heat flux, which is determined by the thermalsionless equilibrium temperatur®,=(T—T,)/(T,—T,) for
boundary resistance at the interface. In this situation, theylindrical and spherical media. Large drops in temperature
equivalent thermal conductivity is zero, because the thermadccur at the interface due to the dissimilarity of the two
resistance has a finite value, but the thickness of the layer isaterials when the thickness of the layer studiddn film)
zero. and the size of the inner cylinder and sphere are smaller than
or comparable to the mean free p4ffigs. 3a) and 3b)].
When the thickness of the layer studi@diin film) and the
size of the inner cylinder and sphere are larger than the mean
In optical fibers, the core is generally made of siliconfree path Figs. 3c) and 3d)], the temperature distribution is
dioxide or silicates; the cladding is made of another type ofvery close to that predicted by Fourier’s law. This validates
glass; and the waveguides are coated with polymer. As athe approximation method in the study. The deviation from
example of calculation, a system of silicon dioxide as theFourier’s law shows the propensity for nonequilibrium of the
core and silicon as the nanomedium is studied here. This ighonons. In this situation, the equivalent temperatures for the
different from the real structure, but it gives a clearer com-phonons are defined so as to represent the energy level.
parison. The physical properties are provided in Table I. Th&Vithin the film, continuation of the equivalent temperature
other important parameters are the transmittances;joat  or the phonon energy level demonstrates the uniformity or
interfaces. This can be very complicated if the surface ishomogeneity of the materials structure.

IIl. RESULTS AND DISCUSSION

partially specular and partially diffusé. In this calculation,  When the film thickness is small compared to the mean
the interfaces are assumed to b%totally diffuse. The transmisree path, the phonon energy in the film is mainly determined
sivity is 7jj=(Cjv;/Cjv;+ Cjv;). by the incoming phonons transmitted through the interfaces

which generates temperature discontinuity at the interface
[Figs. 3a) and 3b)]. When the film thickness is large,

TABLE |. Parameters used in the calculatifirom Ref. 16. phonons are at local equilibrium and isentropic in all direc-
Specific heat ~ Group velocity ~Mean free path Density ~ UONS, and t.he.phonon energy level or the temperature is con-
(X 10° J/n? K) (m/9 A) (kgim?)  tinuously distributed over the whole structyféigs. 3c) and
: 3(d)].
s 1.79 4100 6 2278 . .
S:OZ 1.64 6533 430 2330 Figures 4a) and 4b) show the normalized thermal con-

ductivity as a function of the normalized diameter of the




J. Appl. Phys., Vol. 93, No. 7, 1 April 2003 T. Zeng and W. Liu 4167

'TP1-2 T T T T T T 'T~1'2 T T T T T T
£ &
=10 = 1.0 .
e - £ 2==]
w 0.8 - 4 & osh - 1
x P ‘d E -
a — T ] L P
g 0 Lo " e _ @ 0.6- e e .
Il w V4 I
E . 4 a ’ , 7/
= 04l .7 — A0 { Eoa y r/A=0.
i} , r /A=0. e ,
[ ’ 1IA 10 » , ~— r1IA=1.0
(7] 7 - =1.
® 0.2 . hy 4 Bo2t ‘ -=r /A=10 -
| == r/A=10 3 ’ i
=z = o rfr=2
S 0.0 =2 . & 0.0 4
2 (@) g (b)
g -0. I L 1 1 1 I = 0. L L { i 1 !
£702 00 02 04 06 08 10 12 B 32 00 02 04 08 08 10 12
DIMENSIONLESS COORDINATE [(r-r)/(r,r )] DIMENSIONLESS COORDINATE [(r-)/(r -r,)]
;~1-° T T T T T T ;«1.2 T T T T T T
o1, =100
: = S
w 0 o e - w I;’
0 Pt - € 08 { -
S -~ 2 _
E o § r/A=01
é 0. ’ , 4 g 0.6 1 |
E_J Sy —r1IA =0.1 E g -— r1IA =1.0
4 — - =
= o4 /, r/A=1.0 | 2 o r/A=20 |
= ! --rjA=20 - -~ FOURIER
g oz ! ANDFOURIER - i o2} r,fr, = 100 i
Z 2
3, rJjr, = 100 | 8
I g 0.0 4
z © & )
E -0.2 1 1 1 ] 1 1 = 0.2 1 1 1 1 3 t
a -0.2 o "%.2 1.2

00 02 04 06 08 1.0 00 02 04 06 08 10
DIMENSIONLESS COORDINATE [(r-r)A(r,-r )] DIMENSIONLESS COORDINATE [(r-r)/(r -r )]

FIG. 3. Distribution of dimensionless temperaturegancylindrical and(b) spherical media of thin films with, /r;=2 and(c) cylindrical and(d) spherical
media for bulk films withr, /r;=100.

cylinder and of the sphere for different film thicknessé&s ( In comparing Figs. &) and 5a), one finds that the effective
=r,—r4). Not surprisingly, the equivalent thermal conduc- thermal conductivity of cylindrical media is determined by
tivity approaches the value for bulk materials as the diametepoth the diameter of the inner cylinder and by the thickness
increases. Figures(® qnd 8b) pIoF the ngvalent thgrmal of the cladding layer, whereas for the spherical structure, the
conductivity as a function of the film thickness for different s¢active thermal conductivity is mainly dependent on the
diameters of the cylinders and spheres. It is interesting Qize of the inner particle, and the thickness of the cladding

note that when the diameter of the inner layer is very Iargefayer is a second-order factffigs. 4b) and §b)]. One can
(for example,r;/A=100), the equivalent thermal conduc- ' . '
thus letr,>r; and concentrate on studying the effect of

tivity is basically independent of the film thickness, and it is .
very close to the value of the corresponding bulk materialsSPnere size. When,>r,, Eq.(20) reduces to

‘}‘1 0 T T ....--‘_-_’-.,T'ﬂ!I ‘31 O T T "_‘_,...
& '._.n"'- <i "”’
k1 K - o
£ P [
= o8- ’." s ro.
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FIG. 4. Effective thermal conductivity fof@) cylindrical and(b) spherical media as a function of the diameter of the inner cylinder and the sphere.
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FIG. 5. Effective thermal conductivity fai@) cylindrical and(b) spherical media as a function of the film thickness.

Kett 3r,/4A and spherical geometries. It defines heat conduction based on
Kouk  [L— (7hgt 711201 72t 31 4N (21 eqwhbnum tempera@ures at the |_nterfaces and_wnhm the
films. An approximation method, diffusion approximation or
Furthermore, when1—(73,+ 71,)/2]/75;=1, Eq. (21) be-  quasiequilibrium within the film, coupled with the jump
comes boundary conditions, is applied to solve the Boltzmann trans-
Kot 3r,/4A port equation for _ph_onons. T_he method is vaIida_ted by its
RN (22)  approaching the limit to Fourier's law when the size of the
bulk . cylinder and the sphere is in the range of that of bulk mate-
This is the same expression as that in Chen’s pHper, rials. It is further verified by investigating the optically thick
where Eq.(22) is presented by experience fitting without approximation used in thermal radiation. Calculations show
justification. As has been shown, E@2) is only a special that a significant drop in temperature occurs at the interfaces
situation for Eq.(21). Nonetheless, for this special situation, for micro- and nanocylindrical and spherical media. For cy-
Chen’s study’ showed that Eq(22) provides almost the lindrical media, the effective thermal conductivity is deter-
same results as that by the exact solution. This also validategsined by both the film thickness and the diameter of the
the approximation in this study. The general validation of theinner cylinder. For spherical media, the effective conductiv-

method is as follows. ity is mainly determined by the size of the inner sphere.
Diffusion approximation coupled with Deissler’s jump

boundary condition is a proven method for thermal radiation

in planar geometrieX. However, it is generally believed that

this method is not applicable for thermal radiation in cylin-

drical and spherical geometries. Its failure is demonstratedc. L. Tien, A. Majumdar, and F. GemeKlicroscale Energy Transport

by Fig. 13-1 in Ref. 15. When the absorption coefficignt  (Taylor and Francis, New York, 1998

approaches zero, and so does the optical thickness, the noéﬁ- Mai“mdzfv J. Hr?at Transferls 7 (1993.
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correct limit. On the other hand, if one fixes the absorptionsy. v. Klein, IEEE J. Quantum Electrorg, 1760(1988.

coefficient while letting the spadéayen thickness approach °S. Tamura, Y. Tanaka, and H. J. Maris, Phys. Re0B2627(1999.

zero, one obtains the correct limit. In other words, if the layer 'C- Weisbuch and B. VinterQuantum Semiconductor Structurésca-

thickness is finite while the absorption coefficient approache&fl(eg'lij”']3 oft?_'nlj’a%gland C. M. Lisber, Nano Lett. 487 (2002

zero, the approximation is invalid. If the absorption coeffi- oy, wy and P. Yang, Adv. Mate3, 520(2000. '

cient is fixed while the layer thickness approaches zero, th&R. J. Jackman, S. T. Brittain, A. Adams, M. G. Prentiss, and G. M. Whi-

approximation is valid. For phonon thermal conduction, thellt'\isues'\(sge;ﬁam 28083(_1%9% ‘o0, S. Ge WA, Hines. 3. 1. Budnick
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