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An integrated 2-D Navier–Stokes equation and its application
to 3-D internal flows

A. NAKAYAMA†*, F. KUWAHARA† and W. LIU‡

†Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Japan
‡School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China

An efficient two-dimensional (2-D) analytical and numerical procedure has been proposed to
investigate three-dimensional (3-D) internal flows through a passage with a spatially variable depth, in
which the viscous forces act significantly on both upper and lower walls. The integral 2-D version of the
Navier–Stokes equation was obtained by integrating the full Navier–Stokes equation in a 3-D form
over the depth of the passage. In order to examine the validity of the integrated momentum equations,
fully-developed flows in straight noncircular ducts were investigated analytically prior to numerical
investigations. It has been shown that the exact solutions for circular, elliptical and equilateral triangular
ducts are obtainable from the integrated Navier–Stokes equation. Having confirmed its wide
applicability to internal flows, numerical computations were conducted to investigate the oscillation
mechanism of a fluidic oscillator. Comparison of the present prediction and experiment reveals the
validity of the present treatment.

Keywords: Internal flow; Numerical method; Fluidics; Oscillation; Non-circular ducts

Nomenclature

f velocity profile function

h(x, y) half depth of the passage, function for the

wall geometry,

u, v, w velocity components in the x, y and z

directions

�u; �v average velocity components

uin bulk mean velocity at the nozzle inlet

p pressure

ReLin
¼ uinLin

n
Reynolds number based on Lin and uin

St ¼ fLin

uin
Strouhal number

t time

x, y, z Cartesian coordinates

n kinematic viscosity

r density

z ¼ z
hðx;yÞ dimensionless coordinate

Subscript

in nozzle inlet

1. Introduction

Internal flows encountered in engineering applications are

three-dimensional (3-D) in nature. Hence, we often have

to appeal to 3-D computations in order to capture the

details of velocity and pressure fields for designing heat

and fluid flow equipment. Such 3-D computations,

however, are extremely expensive and time consuming,

even when only steady sate solutions are required.

Ironically, we may find it difficult to extract meaningful

flow characteristics directly from the results obtained in

such 3-D computations, because of excess spatial

information. Thus, having completed full 3-D compu-

tations, the 3-D results are often integrated over a certain

coordinate to reduce to the averaged values. Such

averaged quantities are much easier to appreciate, making

it possible for us to draw the overall aspects of 3-D flow

characteristics much better.

Recent advances in microfabrication technologies have

been so promising that some micro-fluidics may compete

with conventional mechanical and electrical systems. Fluidic

devices such as feedback fluidic oscillators (e.g. Trippetts

et al. 1973, Parry et al. 1991, Zemel and Furlan 1996)

and fluidic flowmeters (e.g. Boucher and Mazharoglu

1988, Mansy and Williams 1989, Lua and Zheng 2003)

consist of complex 3-D passages with a small depth.

The foregoing consideration prompts us to introduce an

efficient two-dimensional (2-D) numerical calculation

procedure for a 3-D internal flow through a passage with a

spatially variable depth, in which the viscous forces act
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significantly on both upper and lower walls. We shall

derive such a set of 2-D governing equations by

integrating the full 3-D Navier–Stokes equation over the

depth. The resulting integrated momentum equations will

be solved for the dependent variables, namely, the mean

velocity components and pressure averaged locally over

the depth, which varies spatially.

An analytically reduced version of the integrated

momentum equation is applied for the problems of fully-

developed flows in noncircular ducts, so as to restore a

class of exact solutions, which are known for

noncircular shapes. In this way, the soundness of the

integrated momentum equation is elucidated. Further-

more, this set of the integrated momentum equations is

discretized using a finite volume method, so as to

conform with SIMPLE algorithm. A numerical exper-

iment is conducted to investigate the oscillation

mechanism of a feedback fluidic oscillator, which is

designed to spray water to an automobile windshield.

The frequency predicted by the present numerical

procedure is in good accord with that of the experiment,

which proves the validity of the present economical

numerical procedure.

2. Two-dimensional Navier–Stokes equation
integrated over the depth

We shall consider complex passages such as used in

fluidic oscillators for spraying water to the automobile

windshield, as shown in figure 1. We assume that

the passage is shallow enough for the flow within

the passage to stay laminar. The governing equations

in consideration, namely, the continuity, Navier–

Stokes and energy equations for incompressible flows

are given by

›u

›x
þ

›v

›y
þ

›w

›z
¼ 0 ð1Þ

›u

›t
þ

›

›x
u2 2 n

›u

›x

� �
þ

›

›y
vu 2 n

›u

›y

� �

þ
›

›z
wu 2 n

›u

›z

� �

¼ 2
1

r

›p

›x
ð2Þ

›v

›t
þ

›

›x
uv 2 n

›v

›x

� �
þ

›

›y
v2 2 n

›v

›y

� �

þ
›

›z
wv 2 n

›v

›z

� �

¼ 2
1

r

›p

›y
ð3Þ

›w

›t
þ

›

›x
uw 2 n

›w

›x

� �
þ

›

›y
vw 2 n

›w

›y

� �

þ
›

›z
w2 2 n

›w

›z

� �

¼ 2
1

r

›p

›z
: ð4Þ

The passage in consideration is symmetric with respect

to the x–y plane such that the upper and lower wall

geometries are given by z ¼ ^h(x, y), respectively. The

following procedure appears to be similar to that of Hele–

Shaw flow. However, it is noted that h(x, y) can vary

spatially, and that both inertial and viscous terms are

retained. We integrate the continuity equation from 0 to

h(x, y) with respect to z as:

›

›x

ðh

0

u dz þ
›

›y

ðh

0

v dz ¼ 0: ð5Þ

We assume the velocity profiles are:

uðt; x; y; zÞ ¼ �uðt; x; yÞf ðzÞ and

vðt; x; y; zÞ ¼ �vðt; x; yÞf ðzÞ ð6Þ

where

z ¼
z

hðx; yÞ
ð7Þ

and �uðx; yÞ and �vðx; yÞ are the velocity components

averaged over the depth, such that the symmetric function

f(z) should satisfy

f ð^1Þ ¼ 0 and f 0ð0Þ ¼ 0: ð8ÞFigure 1. Fluidic oscillator used for spraying water.
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The foregoing integral form of the continuity equation

(5) may be rewritten as

›�uh

›x
þ

›�vh

›y
¼ 0: ð9Þ

Since w(x, y, z) . 0, the z-momentum equation (4)

immediately gives p ¼ p(t, x, y). We substitute the

velocity profiles given by equation (6) and p ¼ p(t, x, y)

into the x- and y-momentum equations (2) and (3), and

then integrate them over the depth to find

h
›�u

›t
þ

›

›x
h�u2 2 n

›h�u

›x

� �
þ

›

›y
hvu 2 n

›h�u

›y

� �

¼ 2
h

r

›p

›x
þ n f 0ð1Þ

�u

h
1 þ

›h

›x

� �2

þ
›h

›y

� �2
 !

ð10Þ

h
›�v

›t
þ

›

›x
huv 2 n

›h�v

›x

� �
þ

›

›y
h�v2 2 n

›h�v

›y

� �

¼ 2
h

r

›p

›y
þ nf 0ð1Þ

�v

h
1 þ

›h

›x

� �2

þ
›h

›y

� �2
 !

: ð11Þ

One of the simplest candidates for the symmetric

function f(z) is assumed as:

f ðzÞ ¼
3

2
ð1 2 z2Þ ð12Þ

such that f 0(1) ¼ 23. The profile given by the function

conforms to the no-slip and symmetry conditions given by

equation (8). The integrated momentum equations (10) and

(11) along with the integrated continuity equation (9) form a

complete set of the governing equations for a 3-D internal

flow through a complex passage with a small depth. These

governing equations subject to no-slip conditions are

believed to be valid for all passages described by a

moderately varying arbitrary function h(x, y).

3. Fully developed flows in noncircular ducts

We shall examine the validity of the integrated momentum

equations, considering fully developed flows in straight

noncircular ducts, as shown in figure 2.

For the case of fully developed flows, the integrated set

of the equations reduce to the following ordinary

differential equation in a dimensionless form as:

d2

dy*2
h* �u* 2 3

�u*

h*
1 þ

dh*

dy*

� �2
 !

þ h* ¼ 0 ð13Þ

where

�u* ;
�u

2
L2

ref

m
dp
dx

� � ; h* ;
h

Lref

and y* ;
y

Lref

: ð14Þ

The duct width may be chosen for the reference length

Lref, as shown in figure 3. As the duct shape

h*( y*; 0 # y* # 1) is given, the foregoing second order

O.D.E. may be solved for �u* ð y* Þ using the obvious

boundary conditions, namely,

�u* ð0Þ ¼ �u* ð1Þ ¼ 0: ð15Þ

Instead of specifying a particular duct shape, h*( y*), to

find its vertically averaged velocity profile �u* ð y* Þ, we

shall take an inverse solution procedure. That is to find a

family of possible duct shape functions h*( y*), upon

assuming the velocity profile function in the form of

�u* ð y* Þ ¼ cy*að1 2 y* Þb ð16Þ

such that it automatically satisfies the boundary conditions

given by equation (15). Substitution of the forgoing

velocity function (16) into equation (13) and some

manipulation lead to

�u* ð y* Þ ¼ cy*að1 2 y* Þb

¼ 2
1

h*

d2h*

dy*2
þ 2

a

y*
2

b

1 2 y*

� �
1

h*

dh*

dy*

�

þ
aða 2 1Þ

y*2
2

2ab

y* ð1 2 y* Þ
þ

bðb 2 1Þ

ð1 2 y* Þ2

� �

2
3

h*2
1 þ

dh*

dy*

� �2
 !!21

:
ð17Þ

We note the constancy of the exponents a and b in the

foregoing expression, and find the family of possible

duct shape functions, namely, h* ¼ ð1=
ffiffiffi
3

p
Þy* and

h* ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y* ð1 2 y* Þ

p
, which correspond to the cases of

Figure 2. Coordinate system for a straight noncircular duct.

Figure 3. Cross-sectional view of noncircular duct.
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equilateral triangle and elliptical sections, respectively, as

shown in figure 4(a) and (b).

Equilateral triangle of side 2Lref=
ffiffiffi
3

p
:

�u* ¼
1

6
y*2ð1 2 y* Þ for h* ¼

1ffiffiffi
3

p y* ð18Þ

and elliptical section with axes Lref and gLref :

�u* ¼
g2

3ð1 þ g2Þ
y* ð1 2 y* Þ for

h* ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y* ð1 2 y* Þ

p
:

ð19Þ

These dimensionless functions for the average velocity

can be translated to find the local velocity field over the

duct cross-section

uð y; zÞ ¼ 2
L2

ref

m

dp

dx

� �
�u*

y

Lref

� �
f

z

h

� �

as equilateral triangle of side 2Lref=
ffiffiffi
3

p
:

uð y; zÞ ¼
1

4
2

L2
ref

m

dp

dx

� �
1 2

y

Lref

� �

£
y

Lref

� �2

23
z

Lref

� �2
 !

ð20Þ

and elliptical section with axes Lref and gLref :

uð y; zÞ ¼
g2

2ð1 þ g2Þ
2

Lref

m

dp

dx

� �

£
y

Lref

1 2
y

Lref

� �
2

z

Lref

� �2
 !

ð21Þ

which turn out to be the exact solutions obtainable directly

from Navier–Stokes equation (e.g. White 1974). Equation

(21) for the case of g ¼ 1 reduces to the well-known

profile of Hagen–Poiseuille flow, namely,

uðrÞ ¼
1

4
2

1

m

dp

dx

� �
ðR2 2 r 2Þ ð22Þ

where

R ¼ Lref=2 and r 2 ¼ ð y 2 RÞ2 þ z2: ð23Þ

The foregoing preliminary consideration suggests a wide

range of applicability of the present integral momentum

equations.

4. Numerical simulation of jets from a fluidic oscillator

In what follows, the fluidic oscillator with constant h, as

already shown in figure 1, will be examined numerically,

using the integrated momentum equations (10) and (11)

along with the integrated continuity equation (9). This

oscillator is one of typical fluidic devices installed in some

Japanese automobiles for spraying water to the auto-

mobile windshield. The numerical results obtained here

are compared with the experimental data recently

conducted by Kuwahara et al. (2005) so as to investigate

the validity of this economical numerical procedure and

its acquired accuracy.

All governing equations conform to the following

general transport equation:

h
›f

›t
þ

›

›x
h�uf2 Gf

›hf

›x

� �

þ
›

›y
h�vf2 Gf

›hf

›y

� �
¼ Sf ð24Þ

which was then integrated over a small element and time

interval to form a general discretized equation for the

point P and its neighboring points E, W, N and S, as

follows:

aPfP ¼ aEfE þ aWfW þ aNfN þ aSfS þ b: ð25Þ

The well-known QUICK scheme has been adopted for

differencing the advection terms. Then, they were

numerically solved using SIMPLE algorithm proposed

by Patankar and Spalding (1972). Convergence was

measured in terms of the maximum change in each

variable during an iteration. The maximum change

allowed for the convergence check was set to 1025, as

the variables are normalized by appropriate references.

Further details on this numerical procedure can be found

in Patankar (1980) and Nakayama (1995). All compu-

tations were performed using the computer system at

Shizuoka University Computer Center.

In this study, the Cartesian grid system is used instead of

the body fitted system. The latter is recommended if the

detailed flow field within the passage needs to be explored.

However, when only macroscopic characteristics such as

Figure 4. Duct cross-sections: (a) Equilateral triangular cross-section;
(b) Elliptical cross-section.
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oscillation frequency are needed, the former would suffice

for the purpose. Geometrical data from a CAD are first

translated in a set of bmp data, which is then fed into the

pre-processor developed by our group to generate a grid

system automatically.

A typical grid system consists of 201 £ 201 nodes with

dense and coarse meshes for the regions inside and outside

of the passages, respectively, to cover a large domain of

integration, including both the fluidic devise and its

surroundings, namely, 100 £ 25 mm2. Figure 5 shows a

part of dense mesh distributed around the fluidic oscillator

for the present non-uniform grid system. Preliminary

calculations were made to compare the results against

those obtained with 301 £ 301 nodes for some selected

cases. In this way, the originally used grid resolution was

found sufficient. Moreover, the time step was set small

enough to satisfy Courant condition, after confirming that

any further decrease in the time step does not alter the

results significantly.

Numerical computations were initiated setting a

uniform velocity uin at the nozzle inlet, which was varied

from 2.2 to 6.0 m/s, at the inlet. For this operation range,

the Reynolds number ReLin
based on the inlet width Lin and

velocity uin varies from 4400 to 12,000. This is the range

in which Kuwahara et al. (2005) previously conducted an

experiment to measure the frequency of oscillating flow

by a stroboscope. It takes about 10 cycles of oscillations

for the velocity to attain its periodically fully-developed

stage. Figure 6 (a)–(f) depict a complete cycle of the

periodically fully-developed velocity field for the case of

ReLin
¼ 4400. These figures clearly show that the

oscillation frequency for this case is about

f ¼ 1/2.22 ms ¼ 450 Hz. The results of computations

carried out for the fluidic oscillator were assembled in

terms of Strouhal number St ; fLin/uin. The predicted

Strouhal number St stays almost constant, namely,

St ; fLin/uin . 0.4, over the range of Reynolds number

studied, which turns out to be quite close to the

experimentally observed value.

The mechanism of the fluidic oscillation is quite

complex, as can be seen from these figures. Another set

Figure 5. Grid nodes within the fluidic oscillator.

Figure 6. Oscillating velocity field.
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of computations were carried out deleting five circular

cylinder obstacles located upstream of the round equilateral

triangular cavity. Oscillations were observed just as in the

case of the passage with the obstacles. Thus, it is not the

upstream flow obstruction but the imbalance in two jets

meeting each other within the round equilateral triangular

cavity that causes such fluidic oscillations. A parametric

study can readily be made to find possible geometrical

parameters to control its oscillation pattern and frequency,

since the interface between the present CFD code and CAD

system has been already established. However, such an

attempt is out of the scope of the present study.

5. Concluding remarks

Full Navier–Stokes equation in the 3-D form was

integrated over a local channel depth to obtain the

integrated 2-D Navier–Stokes equation for analyzing 3-D

internal flows through a passage with a spatially variable

depth. Firstly, the integrated momentum equation was

applied for the problems of laminar fully-developed flows

in noncircular ducts, so as to restore a class of exact

solutions, namely those for circular, elliptical and

equilateral ducts. Secondly, a numerical computation

code was developed and coupled with a CAD system, so as

to conduct a numerical experiment, demonstrating its

effectiveness for designing fluid flow devices. The

numerical procedure developed in this study can easily

be extended to the case of turbulent flows. Some friction

law should be introduced to evaluate the turbulent

frictional forces on the upper and lower walls. Such

investigations are underway.
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