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Performance optimization of minimally nonlinear irreversible heat engines and refrigerators
under a trade-off figure of merit
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A performance optimization for minimally nonlinear heat engines and refrigerators is conducted under an
optimization criterion of �. The results show that under tight-coupling conditions, the efficiency and coefficient
of performance (COP) bounds in asymmetric dissipation limits are the same as those obtained by de Tomas
et al. [Phys. Rev. E 87, 012105 (2013)] for low dissipation heat devices. The efficiency bounds for heat engines
under nontight-coupling conditions are also analyzed and the experimental results lie between theoretical results
obtained under different coupling strengths. For refrigerators, the theoretical results are also in good agreement
with some observed results. The efficiency and COP bounds under the � criterion are refined, which are closer
to real heat engines and refrigerators.
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I. INTRODUCTION

Conditioned on energy saving and fuel depletion, the
optimization of real heat devices has attracted much atten-
tion. Carnot efficiency ηC = 1 − Tc/Th defines the maximum
energy conversion rate of real heat engines [1], as does the
Carnot coefficient of performance εC = Tc/(Th − Tc) of real
refrigerators, where Th and Tc denote the temperatures of
the hot and cold reservoirs, respectively. All processes in
Carnot heat devices are quasistatic. This means that the time
duration for completing a cycle is infinitely long, which leads
to zero power extracted for heat engines or a zero cooling
load rate for refrigerators. Therefore, Carnot devices must
be speeded up to meet the actual demands. By considering
finite durations of the heat transfer processes between the heat
reservoirs and working fluid, Curzon-Ahlborn (CA) proposed
the upper bound of efficiency (ηCA = 1 − √

Tc/Th) for heat
engines working at maximum power output conditions [2].
This opened a new chapter of thermodynamics, i.e., finite time
thermodynamics, to which much effort has been devoted [3,4].

For heat engines, the efficiency at maximum power (EMP)
is often adopted as the criterion for optimization. Taking into
account the entropy generation in isothermal processes, which
are treated as inversed functions of process time duration, i.e.,∑

h /τh and
∑

c /τc in heat absorbing and releasing processes,
respectively, Esposito et al. [5] proposed the low dissipation
model, and then obtained the lower and upper bounds of
the efficiency at EMP under asymmetric dissipation limits.
In addition, under the symmetric dissipation condition, the
CA efficiency is recovered. Later, further research on the low
dissipation model by considering either the time duration and
irreversibility in the adiabatic processes, or by treating the
entropy generation in the isothermal processes as a quadratic
form of heat exchange rate between the working media and
reservoirs under the EMP criterion, is also conducted [6–8].
Furthermore, provided that the temperature difference between
the hot and cold reservoirs is very small (Th ≈ Tc), Van den
Broeck [9] investigated linear irreversible heat engines, which

*Corresponding author: w_liu@hust.edu.cn

can be described by the following Onsager relations [10]:

J1 = L11X1 + L12X2, (1)

J2 = L21X1 + L22X2, (2)

where X1 = F/T under an external force F , J1 = ẋ is
the derivative of the conjugate variable x of F , X2 ≈
�T/T 2, J2 = Q̇h, and the Onsager coefficients (Lij ) with
the reciprocity L12 = L21 satisfy the relations L11 � 0, L22 �
0, and L11L22 − L12L21 � 0. In his paper, the CA efficiency
is retrieved. By adding a nonlinear term to the linear relations
to consider the power dissipation, Izumida and Okuda [11]
obtained the same upper bound as that in Ref. [5]. Moving
further, they demonstrated that the model could describe the
low dissipation models for both heat engines and refrigerators
[11,12]. However, the arbitrariness in selecting the thermal
flux may result in fatal consequences of the optimization for
refrigerators, and Sheng and Tu considered a more general
model with weighted reciprocal of temperature and thermal
flux [13,14].

For refrigerators, the EMP criterion is not an appropriate
figure of merit for optimization [15]. Yan and Chen [16]
proposed a new criterion εQ̇c, where ε is the coefficient of
performance and Q̇c is the cooling load rate. Later, de Tomas
[17] developed this criterion and defined a unified optimization
figure of merit χ = zQin/tcycle, which is appropriate for
both heat engines and refrigerators, where z is the converter
efficiency (η for heat engines and ε for refrigerators), Qin

is the heat absorbed by the system, and tcycle denotes the
time duration for a cycle. χ becomes the EMP and εQ̇c the
figure of merits for heat engines and refrigerators, respectively.
Wang et al. [15] selected χ as the figure of merit and
obtained the lower and upper bounds of the COP for the
maximum figure of merit for low dissipation refrigerators,
i.e., 0 < εmaxχ < (

√
9 + 8εC − 3)/2. They declared that their

theoretical prediction agreed well with some real refrigerators.
Actual heat engines or refrigerators may not work at their

maximum power output or maximum cooling load rate, but
might work under a compromise between energy benefits
and losses. Hernández et al. [18] proposed a new figure
of merit �, accounting for both the energy benefits and
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losses. Using the � criterion, de Tomas et al. [19] obtained
the efficiency and COP of low dissipation heat engines
and refrigerators under asymmetric limits. The COP of low
dissipation refrigerators with irreversibility in the adiabatic
processes was also considered by Hu et al. [20] under the �

criterion. In addition, by comparing the bounds and efficiencies
of heat engines described by different models under the EMP
criterion and � criterion, Sánchez-Salas et al. [21] showed
the maximum � regime was more efficient. Furthermore,
Aperter et al. [22] declared that the real refrigerators do
not operate under the maximum cooling power condition
but under the trade-off between the cooling power and the
COP. However, under the trade-off figure of merit (�), the
proposed lower bounds are very close to the upper bounds
and are not in accord with observed efficiencies or COPs
for heat engines and refrigerators, respectively. In the present
paper, we systemically discuss the efficiency and COP for
minimally nonlinear heat engines and refrigerators under the
figure of merit � in Secs. II and III, respectively. Our results are
compared with experimental ones, both for heat engines and
refrigerators. Finally, in Sec. IV some important conclusions
are drawn.

II. HEAT ENGINES AND THE � CRITERION

For heat engines, a certain amount of heat Q̇h is absorbed
from the hot reservoir (Th), some of which (Q̇c) is evacuated
to the cold reservoir (Tc) at the end of a cycle. Meanwhile, the
work is produced. After a cycle, the working fluid in the heat
engine returns to its initial state; therefore, its entropy change
per cycle is zero. The total entropy production rate σ̇ of the
heat engine can be written as

σ̇ = −Q̇h

Th

+ Q̇c

Tc

= −Ẇ

Tc

+ Q̇h

(
1

Tc

− 1

Th

)
, (3)

where the dot denotes the quantity per unit time for simul-
taneous heat engines or the quantity divided by the cycle
time duration for sequential heat engines. We assume the
system performs work W against an external force F with
its conjugate variable x. The corresponding thermodynamic
force and its conjugate flux can be defined as X1 = F/Tc

and J1 = ẋ, respectively. The power can be rewritten as
Ẇ = −F ẋ = −J1X1Tc; the other thermodynamic force and
its conjugate flux can be also defined as X2 = 1/Tc − 1/Th

and J2 = Q̇h, respectively. Furthermore, extended Onsager
relations are adopted to describe the heat engines [11]:

J1 = L11X1 + L12X2, (4)

J2 = L21X1 + L22X2 − γhJ
2
1 . (5)

The characteristics of the Onsager coefficients in Eqs. (1)
and (2) are assumed to hold in Eqs. (4) and (5). The nonlinear
term −γhJ

2
1 is interpreted as the power dissipation due to the

hot reservoir, where γh denotes its strength (γh > 0). The heat

evacuated to the cold reservoir can be calculated as

Q̇c = Q̇h − Ẇ = Q̇h + J1X1Tc ≡ J3. (6)

According to Eq. (4), Eqs. (5) and (6) can be rewritten as

J2 = L21

L11
J1 + L22(1 − q2)X2 − γhJ

2
1 , (7)

J3 = L21

L11

Tc

Th

J1 + L22(1 − q2)X2 + γcJ
2
1 , (8)

where q = L12/
√

L11L22 is the dimensionless coupling
strength (|q| � 1 [9]). The nonlinear term γcJ

2
1 characterizes

the power dissipation due to the cold reservoir, where γc =
Tc/L11 + γh and denotes its strength (γc > 0). The existence
of the two nonlinear terms results in the decrease of the heat
absorbed by the working fluid, which can be transformed into
work, and the increase of the heat released to the cold reservoir.

The power can be rewritten as

Ẇ = L21

L11
ηCJ1 − Tc

L11
J 2

1 (9)

and the efficiency is given by

η = Ẇ

Q̇h

=
L21
L11

ηCJ1 − Tc

L11
J 2

1
L21
L11

J1 + L22(1 − q2)X2 − γhJ
2
1

. (10)

The � criterion, taking into account both the maximum
work extracted and the losses, is defined as � = (2η −
ηmax)Qh [18]. Then, the target function �̇ = (2η − ηmax)Q̇h

is expressed as

�̇ = 2Ẇ − ηCJ2 = −
(

2
Tc

L11
− ηCγh

)
J 2

1 + L21

L11
ηCJ1

−ηCL22(1 − q2)X2. (11)

By taking the derivative �̇ with respect to J1, we let
∂�̇/∂J1 = 0. Furthermore, the second derivative of ∂�̇/∂J1

satisfies ∂2�̇/∂J 2
1 < 0, which means �̇ achieves its maximum

value at J1,max�̇. Then, we have

J1,max�̇ =
L21
L11

ηC

4 Tc

L11
− 2ηCγh

. (12)

Substituting Eq. (12) into Eq. (10), we obtain the general
efficiency under the maximum �̇ criterion:

ηmax�̇ = ηC

3β − 2ηC

4β − 3ηC + 1
β

(
1
q2 − 1

)
(4β − 2ηC)2

. (13)

where β = Tc

L11γh
= γc

γh
+ 1, and γc/γh denotes the ratio of

power dissipation due to the cold reservoir and that by the hot
reservoir. According to γc = Tc/L11 − γh > 0, 1 < β < ∞.

Therefore, we can obtain the lower and upper bounds of
ηmax�̇ by considering the asymmetrical dissipation limits β →
∞ and β → 1, respectively.

3

4 + 16
(

1
q2 − 1

)ηC � ηmax�̇ � 3 − 2ηC

4
(

1
q2 − 1

)
η2

C − [
3 + 16

(
1
q2 − 1

)]
ηC + 4 + 16

(
1
q2 − 1

)ηC. (14)

The upper and lower bounds monotonously decrease with the decrease of the square of the coupling strength q2 and achieve
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their maximum values under the coupling strength limits
|q| → 1.

3

4
ηC � ηmax�̇ � 3 − 2ηC

4 − 3ηC

ηC ≡ η+
max�̇

(15)

The result in Eq. (15) is the same as that in Ref. [19],
which is obtained by the low dissipation model. Although
the left term in Eq. (15) has the same expression as the lower
bound proposed in Ref. [19], in this paper the lower bound will
be discussed further under the nontight-coupling strengths.
Furthermore, under the tight-coupling condition (|q| = 1),
according to Eq. (13), the efficiency under the maximum
trade-off criterion under symmetric dissipation (β = 2) is

η
sym
max �̇

= ηC

6 − 2ηC

8 − 3ηC

= 3

4
ηC + 1

32
η2

C + 3

256
η3

C + O
(
η4

C

)
,

(16)
while the efficiency under the maximum trade-off criterion in
the endoreversible model [18] is

ηendo
max �̇

= 1 −
√

(1 − ηC)(2 − ηC)

2

= 3

4
ηC + 1

32
η2

C + 3

128
η3

C + O
(
η4

C

)
. (17)

Comparing Eqs. (16) and (17), under the symmetric dissi-
pation condition, the efficiency at maximum trade-off criterion
is equivalent to that obtained through the endoreversible model
to accuracy of the second order of ηC . This means the model
in this paper could describe the endoreversible Carnot heat
engines. Furthermore, Eq. (17) is also obtained through the low
dissipation model under the symmetric dissipation condition
[19]. According to Ref. [11], the low dissipation Carnot
heat engine can be described by the minimally nonlinear
irreversible model with tight-coupling strength. Substituting
Eq. (12) into Eq. (11), we have

�̇ =
(

L21
L11

ηC

)2

8 Tc

L11
− 4ηCγh

. (18)

Combining Eqs. (30), (32), and (34) in Ref. [11] and
maximizing Eq. (18) with respect to λ = τc/τh, then the
optimal λopt is obtained below:

λopt =
√

2
∑

c(1 − ηC)∑
h(2 − ηC)

. (19)

Furthermore, βopt = (1 − ηC)/λopt + 1. Substituting it into
Eq. (13), the same expression as Eq. (13) in Ref. [19] can be
recovered. However, due to the different optimization space,
the expressions of efficiencies for the two models under the
corresponding symmetric dissipation condition are not the
same. By maximizing �̇(λ) with respect to λ, the equivalence
can be established. As mentioned before, those two efficiencies
are equal to the second order of ηC . This means for the
minimally nonlinear irreversible model under the symmetric
dissipation condition, the time duration ratio has little impact
on the efficiency of the heat engines.

To step further, for the minimally nonlinear irreversible
model under the symmetric dissipation condition (γh = γc),

the irreversible entropy production ratio in the heat exchanging
process is

c

h

= 2

(1 − ηC)(2 − ηC)
, (20)

while c/h = 1 for the low dissipation model under the
symmetric condition. It can explain the little difference
between those two efficiencies under the relevant symmetric
conditions.

For nontight-coupling heat engines, where |q| < 1, the
second terms in Eqs. (7) and (8) are the heat leak from the
hot reservoir to the cold one. They do not have any impact on
the power output, but decrease the corresponding efficiency.
Furthermore, as the � criterion representing a compromise
between heat benefits and losses, the heat leak increases heat
loss and should have a significant impact on the efficiency
under that criterion. Therefore the efficiency should be much
smaller. As seen in Eq. (14), the lower bound is determined
by the coupling strength, which is hard to measure, and
depends on the design and manufacture of the heat engines and
operation conditions. The experimental data and theoretical
results for heat engines are compared and plotted in Fig. 1.
All the observed efficiencies are under the upper bound η+

max �̇
and located between the theoretical efficiencies calculated at
q2 = 1 and q2 = 0.8. That means real heat engines usually
operate between the above two different coupling strengths
in the � perspective. However, the lower bound proposed
by de Tomas et al. [19] using the low dissipation model, is
much higher than the experimental results. Therefore, they
declared that many heat engines are designed to work at
higher velocity, instead of levels of efficiency and energy
saving. Actually, energy saving and efficiency should both
be taken into consideration in Diesel and Otto engines in
automobiles and trucks. The efficiency bounds proposed by
our model fit well with the experimental ones by considering
different coupling strengths. The results obtained in this paper

FIG. 1. Comparison between experimental results (dots) [19]
and theoretical results for heat engines. The results are calculated
under the symmetric dissipation condition (β = 2) and different
coupling strengths (q2 = 0.8, 0.9, and 1). Furthermore, the upper
bound η+

max �̇
is also plotted.
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could offer a more insightful perspective to study real-life heat
engines.

III. REFRIGERATORS AND THE � CRITERION

For refrigerators, the cooling load (Q̇c) is absorbed from
the cold reservoir (Tc) and a certain amount of heat (Q̇h) is
evacuated to the hot reservoir (Th) at the end of a cycle. After a
cycle, the working fluid in the heat engine returns to its initial
state; therefore, its entropy change per cycle is zero. The total
entropy production rate σ̇ of the heat engine can be written as

σ̇ = Q̇h

Th

− Q̇c

Tc

= Ẇ

Th

+ Q̇c

(
1

Th

− 1

Tc

)
, (21)

where the dot denotes the quantity per unit time for simulta-
neous refrigerators or the quantity divided by the cycle time
duration for sequential refrigerators. The first thermodynamic
force and its conjugate flux can be defined as X1 = F/Tc

and J1 = ẋ, respectively. The input power can be rewritten
as Ẇ = F ẋ = J1X1Th; the other thermodynamic force and
its conjugate flux can also be defined as X2 = 1/Th − 1/Tc

and J2 = Q̇c, respectively. Furthermore, extended Onsager
relations are adopted to illustrate the heat engines [12]:

J1 = L11X1 + L12X2, (22)

J2 = L21X1 + L22X2 − γcJ
2
1 . (23)

The characteristics of the Onsager coefficients in Eqs. (1)
and (2) are assumed to hold in Eqs. (22) and (23). The nonlinear
term −γcJ

2
1 is interpreted as the power dissipation into the

cold reservoir, where γc denotes its strength (γc > 0). The
heat evacuated to the hot reservoir can be calculated as

Q̇h = Q̇c + Ẇ = Q̇c + J1X1Th ≡ J3. (24)

According to Eq. (22), Eqs. (23) and (24) can be
rewritten as

J2 = L21

L11
J1 + L22(1 − q2)X2 − γcJ

2
1 , (25)

J3 = L21

L11

Th

Tc

J1 + L22(1 − q2)X2 + γhJ
2
1 . (26)

The nonlinear term γhJ
2
1 characterizes the power dissipa-

tion into the hot reservoir, where γh = Th/L11 − γc denotes
its strength (γh > 0). The existence of the two nonlinear terms
results in the decrease of the heat absorbed by the working
fluid and the increase of the heat released to the heat reservoir.

The input power can be rewritten as

Ẇ = L21

L11εC

J1 + Th

L11
J 2

1 (27)

and the coefficient of performance is given by

ε = Q̇c

Ẇ
=

L21
L11

J1 + L22(1 − q2)X2 − γcJ
2
1

L21
L11εC

J1 + Th

L11
J 2

1

. (28)

The � criterion is defined as � = (2ε − εmax)W in
Ref. [18]. Then, the target function �̇ = (2ε − εmax)Ẇ can

be expressed as

�̇ = 2J2 − εCẆ = L21

L11
J1 + 2L22(1 − q2)X2

−
(

2γc + εC

Th

L11

)
J 2

1 . (29)

By taking the derivative of �̇ with respect to J1, we let
∂�̇/∂J1 = 0. Furthermore, the second derivative of ∂�̇/∂J1

satisfies ∂2�̇/∂J 2
1 < 0, which means �̇ achieves its maximum

value at J1,max �̇. Then, we have

J1,max �̇ =
L21
L11

4γc + 2εC
Th

L11

. (30)

Substituting Eq. (30) into Eq. (28), we obtain the general
efficiency under the maximum �̇ criterion.

εmax �̇ = εC

3 + 2εCα − 1
εCα

(
1
q2 − 1

)
(4 + 2εCα)2

4 + 3εCα
, (31)

where α = Th

L11γc
= γh/γc + 1 and γh/γc denotes the ratio of

power dissipation into the hot reservoir and that into the cold
reservoir. According to γh = Th/L11 − γc > 0, we obtain 1 <

α < ∞.
Under the tight-coupling condition |q| = 1 Eq. (31) can be

rewritten as

εmax �̇ = 3 + 2εCα

4 + 3εCα
εC. (32)

We can also obtain the lower and upper bounds of εmax �̇

under the tight-coupling condition by considering the asym-
metrical dissipation limits α → ∞ and α → 1, respectively.

2

3
εC � εmax �̇ � 3 + 2εC

4 + 3εC

εC ≡ ε+
max �̇

. (33)

This expression is in accord with that in Refs. [19] and [20]
for low dissipation refrigerators. But the lower bound is not
practical, which will be discussed further in the following.

Under the symmetric dissipation condition (α = 2),
Eq. (32) becomes

ε
sym
max �̇

= 3 + 4εC

4 + 6εC

εC = 2

3

1
1
εC

− 1
12ε2

C

+ 1
16ε3

C

+O
(
1/ε4

C

) . (34)

The COP under the maximum trade-off criterion in the
endoreversible model [18] is

εendo
max �̇

= εC√
(1 + εC)(2 + εC) − εC

= 2

3

1
1
εC

− 1
12ε2

C

+ 1
8ε3

C

+O
(
1/ε4

C

) . (35)

From Eqs. (34) and (35), the COP at maximum trade-
off criterion is equivalent with that obtained through the
endoreversible model to the second order of 1/εC . Therefore,
this model in this paper could also apply to the endoreversible
Carnot refrigerators. Furthermore, Eq. (35) is also obtained
through the low dissipation model under the symmetric
dissipation condition [19]. According to Ref. [12], the low
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dissipation Carnot refrigerator can be described by the min-
imally nonlinear irreversible model with the tight-coupling
strength. Substituting Eq. (30) into Eq. (29), we have

�̇ =
(

L21
L11

)2

8γc + 4εC
Th

L11

. (36)

According to Ref. [12] and maximizing Eq. (36) with
respect to λ, the optimal λopt is obtained below:

λopt =
√∑

c(2 + εC)∑
h(1 + εC)

. (37)

Furthermore, αopt = λopt (1 + 1/εC) + 1. Substituting it
into Eq. (31), the same COP expression as Eq. (26) in Ref. [19]
can be recovered. However, due to the different optimization
space, the COPs under the symmetric dissipation condition
for the two models are not the same. By maximizing �̇(λ)
with respect to λ, the equivalence is achieved. As mentioned
before, those two COPs are equal to the second order of
1/εC . This means for the minimally nonlinear irreversible
refrigerator model under the symmetric dissipation condition,
the time duration ratio also has little impact on the COP of the
refrigerators.

To step further, for the minimally nonlinear irreversible
model under the symmetric dissipation condition (γh = γc),
the irreversible entropy production ratio in the heat exchanging
processes is

c

h

= (εC + 1)(εC + 2)

ε2
C

, (38)

while c/h = 1 for the low dissipation model under the sym-
metric condition. It can explain the little difference between
those two COPs under the relevant symmetric conditions.

Under nontight-coupling conditions |q| < 1, the second
terms in Eqs. (25) and (26) indicate the coupling effects
between the heat reservoirs. For actual refrigerators, they
cannot be eliminated. As seen in Eq. (31), the COP is
monstrously increasing function with respect to q2 at fixed

FIG. 2. Comparison between the experimental data of a nominal
1038-kW screw-compressor chiller [20] with theoretical results for
refrigerators.

dissipation ratio. When |q| → 0, the COP under the � criterion
approximates negative infinite, while the negative values are of
no physical meaning. The lower bound should be zero. That is
to say, the COP bounds under the maximum trade-off criterion
are

ε−
max �̇

≡ 0 � εmax �̇ � 3 + 2εC

4 + 3εC

εC ≡ ε+
max �̇

. (39)

As shown in Fig. 2, good agreement between the exper-
imental data and theoretical upper bound also exists for a
kind of refrigerator working at a certain condition. This is
a compromise between the energy benefits and losses. The
lower bound proposed in Refs. [18] and [19] is also higher
than the observed efficiency. However, according to our model
the lower bound of COP is zero. That could offer a more
insightful perspective to study real-life refrigerators.

IV. CONLUSIONS

The � criterion presents a compromise between the
effective available energy and the losses. By applying this
optimization criterion, the efficiency and COP are deduced
for minimally nonlinear heat engines and refrigerators, re-
spectively. Under the tight-coupling conditions, the lower
and upper bonds of the efficiency and COP in asymmetric
dissipation limits perfectly agree with those obtained through
the low dissipation models for heat engines and refrigerators,
respectively [19]. Due to the different optimization space, the
efficiencies and COPs under the corresponding symmetric
dissipation condition for the two models are not the same.
Furthermore, the equivalence of the efficiencies and COPs
under the trade-off criteria obtained from present models
(|q| = 1) and through the low dissipation models can be
achieved by further maximization of �̇(λ) with respect to
λ. The low dissipation model is just a special case of the
minimally nonlinear irreversible models. The present model
under the tight-coupling condition |q| = 1 is a sufficient rather
than a necessary condition for recovering the low dissipation
model, which specifies the the irreversible entropy production
in each heat exchanging processes while the present model
does not. Therefore, even under the tight-coupling conditions,
the present model is more general and universal than the low
dissipation one. In addition, for real-life heat engines and
refrigerators, the coupling effects between the heat reservoirs
should be considered. However the coupling strength is hard
to be quantified. In this paper, some discussions on the non-
tight-coupling conditions have been conducted. The results are
compared with experimental data, and good accordance exists
both for heat engines and refrigerators, respectively. This paper
could offer a more insightful perspective to study real-life heat
engines and refrigerators.
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