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Abstract
A general refrigerator model with non-isothermal processes is studied. The coefficient of
performance (COP) and its bounds at maximum χ figure of merit are obtained and analyzed.
This model accounts for different heat capacities during the heat transfer processes. So, different
kinds of refrigerator cycles can be considered. Under the constant heat capacity condition, the
upper bound of the COP is the Curzon–Ahlborn (CA) coefficient of performance and is
independent of the time durations of the heat exchanging processes. With the maximum χ
criterion, in the refrigerator cycles, such as the reversed Brayton refrigerator cycle, the reversed
Otto refrigerator cycle and the reversed Atkinson refrigerator cycle, where the heat capacity in
the heat absorbing process is not less than that in the heat releasing process, their COPs are
bounded by the CA coefficient of performance; otherwise, such as for the reversed Diesel
refrigerator cycle, its COP can exceed the CA coefficient of performance. Furthermore, the
general refined upper and lower bounds have been proposed.

Keywords: refrigerators, coefficient of performance, non-isothermal processes

(Some figures may appear in colour only in the online journal)

1. Introduction

In equilibrium themodynamics, Carnot’s theorem states the
upper bounds for energy conversion devices operating
between two heat reservoirs; that is, η = − T T1 /C c h for heat
engines and ε = −T T T/( )C c h c for refrigerators, where Tc and
Th are the temperatures of the cold and hot reserviors,
respectively. These upper bounds have a profound impact on
theoretical physics. However, in the ideal Carnot cycle, all of
the processes are quasistatic and infinitely slow, leading to
vanishing power output for heat engines and a zero cooling
load rate for refrigerators. Therefore, for actual demand, the
cycle time duration must be considered. A finite time ther-
modynamic analysis has provided a perspective of optimi-
zation for real refrigerators [1].

The maximum power output is often adopted as the
criterion for optimizing real heat engines. Taking only into
consideration the irreversibility caused by heat transfer

between the heat reservoirs and the working substance
during the isothermal processes, Curzon–Ahlborn [2] pro-
posed the paradigmatic endoreversible model and deduced
its efficiency at maximum power output. That is the
groundbreaking CA efficiency, which is also obtained
through the linear irreversible model [3]. In addition,
Esposito et al [4] proposed the low dissipation model by
considering the entropy generation in the isothermal pro-
cesses, which are treated as an inversed function of pro-
cess time duration in the heat absorbing and releasing
processes, respectively, and then they obtained the lower
and upper bounds of the efficiency at maximum power
output. Furthermore, the CA efficiency is recovered under
the symmetric dissipation condition. Considering the tem-
perature changes in the heat absorbing and releasing pro-
cesses and that the heat transfer obeys Newton’s law of
cooling, Yan and Guo [5] also obtained the upper and
lower bounds of efficiency at maximum power output. In
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addition, the same bounds are also proposed by Izumida
and Okuda through the minimally nonlinear irreversible
model [6].

However, for refrigerators, the minimum power input is
not an appropriate optimization criterion [7], and much effort
has been devoted to optimizing refrigerators under different
figures of merit. Jiménez de Cisneros et al [8] studied
the COP at maximum COP criterion through the linear
irreversible model. By maximizing the per-unit-time COP,
Velasco et al [9] obtained the upper bound of COP,
ε ε= + −1 1CA C , i.e. the CA coefficient of performance,
for endorevesible refrigerators. It has been also obtained in
refrigerators with non-isothermal processes [10]. Hernandez
et al [11] proposed the Ω figure of merit, indicating a com-
promise between energy benefits and losses. In subsequent
studies, some efforts have been shown to be delicate to the
optimization using the Ω criterion. De Tomas et al [12] and
Hernandez et al [13] investigated the COP of the refrigerators
based on the Ω figure of merit and proposed the upper and
lower bounds of the COP. The same bounds are also obtained
through the minimally nonlinear irreversible model under the
tight-coupling conditions [14]. Furthermore, Yan and Chen
[15] conducted the optimization with the target function ε ̇Qc,
where ̇Qc is the cooling load rate of the refrigerators. De
Tomas et al [16] introduced the unified optimization criterion
χ both for heat engines and refrigerators. This criterion is
defined as the efficiency or COP multiplied by the heat
absorbed Qin divided by the cycle time duration tcycle, i.e.
χ = zQ t/in cycle, where z is the efficiency for heat engines or
the COP for refrigerators. By taking χ as the target function,
based on the low dissipation model, Wang et al [7] proposed
that the COP at maximum χ was bounded between 0 and

ε+ −( )9 8 3 /2C . In addition, the same bounds are also
obtained through the minimally nonlinear irreversible
model [17].

The main merit of the low dissipation models and the
linear irreversible and minimally nonelinear irreversible
models is that we do not need to consider the heat transfer law
between the working medium and the heat reservoirs. How-
ever, in the low dissipation model, the temperature of the
working medium does not change during heat transferring
processes, which is not true for a realistic system. In the linear
irreversible model, the temperature difference of the cold and
hot reservoirs should be small enough to meet the requirement
of the Onsager relations. In reality, the heat exchanging
processes should not be isothermal, and some attention has
been focused on considering the temperature changes of the
working substance during the heat absorbing and releasing
processes [18]. In addition, the tradional ones, which specify
concrete heat transfer laws, are still of merit. Based on the
heat transfer law, the connection between the maximum-work
and maximum-power thermal cycles has also been discussed
[19]. In this paper, we use the method proposed in [5] to
describe the refrigerator cycle. This model accounts for the
temperature changes of the working substance in heat
exchanging processes. Therefore, it is more general and

realistic. First, we introduce the model in section 2. Then, the
COP of refrigerators and its bounds are systematically ana-
lyzed based on the χ figure of merit in sections 3 and 4. The
new COP bounds are proposed. Finally, some concluding
remarks are given.

2. Mathematical model

As to refrigerators, the cooling load Qc is absorbed from the
cold reservoir (Tc), and a certain amount of heat Qh is evac-
uated to the hot reservoir (Th) at the end of a cycle. The heat
transfer law between the heat source and the working sub-
stance is assumed to conform to Newton’s law of cooling

= = −( )Q

t
cm

T

t
k T T

d

d

d

d
(1)s

where c is the heat capacity, m is the working substance mass,
T is the working substance temperature, Ts is the heat source
temperature and k is the heat conductance (contact area
multiplied by the heat transfer coefficient). The initial tem-
perature of the working substance is Tc0 and Th0 at the
beginning of the cooling and heating processes, respectively.
According to equation (1), the working substance temperature
in the heat absorbing process is a function of time t

= − − ∑−( )T T T T e (2)c c c
t

0 c

where ∑ = c m k/c c c. The time duration of the heat absorbing
process is τc, and the cooling load can be calculated as

∫= − = − − ∑τ−( )(( ) )Q k T T c m T T 1 e (3)c c c c c c0
c c

The relative entropy change of the working substance in
the heat absorbing process is given by

∫Δ = =
− − τ− ∑( )

s
dQ

T
c m

T T T

T
ln

e
(4)c

c
c

c c c

c

0

0

c c

Similarly, the heat evacuated to the hot reservoir and the
entropy change during the heat releasing process are given by

= − − ∑τ−( )( )Q c m T T 1 e (5)h h h h0
h h

Δ = −
+ − τ− ∑( )

s c m
T T T

T
ln

e
(6)h h

h h

h

h0

0

h h

where ∑ = c m k/h h h, τh is the time duration of the heat
releasing process. In this paper, we assume that the com-
pressing and expanding processes are isentropic and that the
time for completing those processes is zero. After a cycle, the
working substance returns to its initial state, and the total
entropy change of the working substance should be zero, i.e.
Δ Δ+ =s s 0h c . Then, we have
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where γ = c c/h c. The coefficient of performance ε is

ε =
−
Q

Q Q
(8)c

h c

The figure of merit χ ε= Q t/c cycle is
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Combining equations (7) and (9) and maximizing χ with
respect to Tc0, we have
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where φ = T T/c c0. In the heat absorbing process, the initial
temperature of the working medium should be lower than that
of the cold reservoir; therefore, φ > 1. Meanwhile, sub-
stituting equations (3) and (5) for equation (8), the COP of the

refrigerator can be rewritten as
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In general, the COP (εm) at maximum χ figure of merit
can be derived using equations (10) and (11), which will be
discussed in the following parts.

3. Constant heat capacity (γ ¼ 1)

In this situation, the heat capacity stays constant during the
refrigerator cycle. Thus, γ = 1. Therefore, equations (10) and
(11) can be rewritten as

ε
ε

− +
+

=N 2N
1

0 (12)C

C

2
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ε ε
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N 1
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Combining equations (12) and (13), we have

ε ε ε= + − ≡1 1 (15)m C CA

Equation (15) gives the upper bound of the COP at the
maximum χ criterion, which is independent of the time
duration in each process and is equal to the CA coefficient of
performance. It has also been obtained by using the endor-
eversible refrigerator model [15]. Although the upper bounds
of the COP are the same for these two models, they have
different physical meanings, and the optimization spaces are
different. In the endoreversible model, the upper bound of the
COP is obtained by maximizing χ with respect to the time
durations of the heat absorbing and releasing processes,
respectively, while in this model, the upper bound is obtained
by maximizing χ with respect to the initial temperature of the
working medium, and the time durations are treated as con-
stants. Unlike the Carnot refrigerators, in this model, the
temperature of the working medium in either heat exchanging
process does not stay constant. The model studied in this
paper should be more practical and realistic than the endor-
eversible refrigerator one. In addition, situations with various
heat capacities can be considered futher in this model.

Figure 1. Optimal COP ε( )m with dimensionless contact times of the
heat absorbing process under different heat capacity ratios
γ =( 0.5, 1, 2), where ε = 10C and τ ∑ = 1h h .
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4. Non-constant heat capacity (γ ≠ 1)

When the heat capacities do not remain constant in the heat
exchanging processes, equation (10) is transcendental and
cannot be solved explicitly. Numerical calculations are con-
ducted to investigate the impacts of the parameters on the
optimal COPs. As shown in figure 1, when the heat capacity
ratio is larger than unit (γ > 1), and τ ∑/h h is fixed, the opti-
mal COP increases with increasing τ ∑/c c in a certain interval
and achieves its lower and upper bound under the asymmetric
limits :τ ∑ →/ 0c c and τ ∑ → ∞/c c , respectively. The lower
bound is the CA coefficient of performance. When the heat
capacity ratio is less than unit (γ < 1), the optimal COP
decreases with increasing τ ∑/c c in a certain interval and
achieves its lower and upper bound under the asymmetric
limits τ ∑ → ∞/c c and τ ∑ →/ 0c c . The upper bound is the
CA coefficient of performance. As mentioned before when
the heat capacity ratio is a unit, the optimal COP is the CA
coefficient of performance and is independent of τ ∑/c c.

As we can see in figure 2, when the heat capacity ratio is
larger than unit (γ > 1), and τ ∑/c c is fixed, the optimal COP
increases with increasing τ ∑/h h in a certain interval and
achieves its lower and upper bound when τ ∑ →/ 0h h and
τ ∑ → ∞/h h , respectively. The lower bound is the CA coef-
ficient of performance. When the heat capacity ratio is less
than unit (γ < 1), the optimal COP decreases with increasing
τ ∑/h h in a certain interval and achieves its lower and upper
bound when τ ∑ → ∞/h h and τ ∑ →/ 0h h . The upper bound
is the CA coefficient of performance. As mentioned before
when the heat capacity ratio is a unit, the optimal COP stays
constant and is the CA coefficient of performance.

To take this a step further, when γ > 1, the optimal COP
will increase with increasing τ ∑/h h and τ ∑/c c and will
achieve its maximum value when τ ∑ → ∞/h h and
τ ∑ → ∞/c c . The lower bound is achieved when τ ∑ →/ 0h h

and τ ∑ →/ 0c c are equal to the CA coefficient of perfor-
mance and are independent of the heat capacity ratio. When

γ < 1, the optimal COP will decrease with increasing τ ∑/h h

and τ ∑/c c and will obtain its minimum value when
τ ∑ → ∞/h h and τ ∑ → ∞/c c . The upper bound is achieved
when τ ∑ →/ 0h h and τ ∑ →/ 0c c are equal to the CA coef-
ficient of performance and are also independent of the heat
capacity ratio. Therefore, in the refrigerator cycles, such as the
reversed Brayton refrigerator cycle ( = =c c cc h p), the
reversed Otto refrigerator cycle ( = =c c cc h v) and the
reversed Atkinson refrigerator cycle ( =c ch v, =c cc p ), where
the heat capacity in the heat absorbing process is not less than
that in the heat releasing process, their COPs under the
maximum χ criterion are bound by the CA coefficient of
performance, while in the refrigerator cycles, such as the
reversed Diesel refrigerator cycle ( =c ch p, =c cc v), where
the heat capacity in the heat absorbing process is less than that
in the heat releasing process, their COPs under the maximum
χ criterion can exceed the CA coefficient of performance.
This might be of great guidance for selecting an appropriate
working substance for designing or operating a refrigerator.
Furthermore, as depicted in figure 3, when the dimensionless
contact times are fixed, the optimal COP increases with the
increasing heat capacity ratios in a certain interval and
achieves its lower and upper bound when γ → 0 and γ → ∞.
The CA coefficient of performance is also retrieved when
γ = 1. Therefore, in the situations where τ ∑ → ∞/h h and
τ ∑ → ∞/c c , the general upper and lower bounds of the
optimal COP can be obtained by applying the asymmetric
heat capacity limits γ → ∞ and γ → 0, respectively. The
above analysis will be studied further in the following
sections.

4.1. Short contact time limits

Under the conditions where ∑ →t / 0, the heat absorbing and
releasing processes are both so short that the final temperature
of the working substance is almost equal to its initial tem-
perature after either process. When we expand − ∑texp( / )
to the first order of ∑t / , equations (10) and (11) can be

Figure 2. Optimal COP ε( )m with dimensionless contact times of the
heat releasing process under different heat capacity ratios
γ =( 0.5, 1, 2), where ε = 10C and τ ∑ = 1c c .

Figure 3. Optimal COP ε( )m with different heat capacity ratios,
where ε = 10C and τ τ∑ = ∑ = 1h h c c .
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The solution to equation (16) gives the optimal M
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C

Substituting equation (19) into equation (17), we have
the same upper bound of the COP as equation (15). It is the
CA coefficient of performance and is independent of the heat
capacity ratio.

4.2. Long contact time limits

As mentioned above, in the situations where ∑ → ∞t / , their
upper and lower bounds of the optimal COP can be obtained
by applying the asymmetric heat capacity limits γ → ∞ and
γ → 0. Under the conditions where ∑ → ∞t / , the contact
time is long enough so that the heat exchange between the
working substance and heat reservoirs is sufficient, and the
final temperature of the working substance is almost equal to
that of the heat reservoir. The exponential terms − ∑texp( / )
can be eliminated; therefore, equations (10) and (11) are
simplified as

⎛
⎝⎜

⎞
⎠⎟φ φ γ φ

ε
ε φ

− − − +
+

− =γ γ( )( 1) 2 1
1

1
1

0 (20)C

C

1/ 1/

and

ε ε
ε

φ
= +

−γ+

2
1

1
(21)m

C

C

1/ 1

For symmetric capacity ratio (γ = 1), according to
equation (20), we have

φ
ε

= +
+

1
1

1
(22)opt

C

Substituting equation (22) into equation (21), the CA
coefficient of performance is also recovered. While under
asymmetric conditions (γ ≠ 1), equation (20) cannot be
solved analytically. Based on equations (20) and (21),
numerical calculations are conducted to obtain the optimal
COPs, and the results are plotted in figure 4. The
curves for γ = 0.0001 and γ = 0.01 coincide with each other,

as do the curves for γ = 100 and γ = 10000. Therefore, the
curves for γ = 0.0001 and γ = 10000 can be treated as the
lower and upper bounds of the COP for the refrigerator,
which are fitted as ε ε= + −− ( )9 8 3 3.42m C and

ε ε= + −+ ( )9 8 3 /2.42m C , respectively. The upper
bound of the COP under the χ criterion through the low
dissipation model is ε+ −( )9 8 3 2C [7], which shares
the same form with the lower and upper bounds obtained in
the present paper. Furthermore, in the previous studies under
the maximum χ criterion, the lower bound is zero [7, 13, 17];
however, it is far below all of the observed COPs [7, 13].
Here, we have obtained a new lower bound, which agrees
well with some experimental COPs [13]. Therefore, the lower
bound proposed in this paper should be more practical and
realistic than the previous ones.

5. Conclusions

A general refrigerator model with non-isothermal processes is
studied. The coefficient of performance at maximum χ figure
of merit has been analyzed systematically, and the new COP
bounds have been obtained. For symmetric heat capacity ratio
γ =( 1), the upper bound of the COP is εCA and is independent
of the time durations of the heat exchanging processes. The
same bound has been also obtained using the endoreversible
refrigerator model. However, they have different physical
meanings, and the optimization spaces are different. In the
refrigerator cycles, such as the reversed Brayton refrigerator
cycle, the reversed Otto refrigerator cycle and the reversed
Atkinson refrigerator cycle, where the heat capacity in the
heat absorbing process is not less than that in the heat
releasing process, their COPs under the maximum χ criterion
are bounded by the CA coefficient of performance, while in
the refrigerator cycles, such as the reversed Diesel refrigerator

Figure 4. Optimal COP ε( )m with the Carnot COP under different
heat capacity ratios. The fitted lower (color cyan) bound and upper
bound (color green) of the COP are plotted. In addition, we also plot
some experimental COPs (dots) [13] in this figure.
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cycle, where the heat capacity in the heat absorbing process is
less than that in the heat releasing process, their COPs under
the maximum χ criterion can exceed the CA coefficient of
performance. Furthermore, the COP under the maximum χ
criterion in two special cases have been studied, and the
general upper and lower bounds have been proposed.

However, the present model does not take into con-
sideration the internal irreversibility of the refrigerator cycles.
In real-life refrigerator cycles, the compressing and expanding
processes are no longer isentropic, and many models have
been proposed to investigate the irreversibility in those pro-
cesses [20, 21]. Furthermore, impacts of frictional losses on
the COP are also studied for traditional and quantum refrig-
erators [22, 23]. Extensions of the present model concerning
the internal irreversibility need to be studied further.
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