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Convective heat transfer optimization based on minimum entransy dissipation is studied in this paper. By
setting entransy dissipation as optimization objective and power consumption as constraint condition,
optimized fluid momentum equation with additional volume force for convective heat transfer are
deduced by variational principle. Numerical investigations for convective heat transfer in a straight
circular tube based on optimized governing equations are conducted. The results show that there exist
longitudinal swirl flows with multi-vortexes in the tube, which leads to heat transfer enhancement at rel-
atively small flow resistance. The present analysis for heat transfer and flow shows that this kind of opti-
mized flow field can realize a far greater increase in heat transfer than that in flow resistance, which
indicates that the investigated optimization method is useful in design of heat transfer enhancement.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

As far as heat transfer enhancement [1,2] is concerned, many
researchers focus on whether heat transfer is enhanced and to
which degree it is enhanced, while ignoring the increase in flow
resistance which sometimes may exceed the degree of heat trans-
fer enhancement. With growing concern about energy saving in
heat exchangers which are widely used in industry, more and more
researchers are devoted to developing heat transfer enhancement
unit which can work efficiently with low power consumption.
Since the overall performance of convective heat transfer is heavily
dependent on heat transfer process, great emphasis should be laid
upon the process optimization [3]. However, the currently used
methods in heat transfer enhancement are more technical and lack
of theoretical optimization to guide the design for various
enhancement techniques.

Bejan et al. [4–7] proposed the constructal theory, which sim-
plified the complicated geometric construction into the assembly
of a series of fundamental units, and made the transport process
optimization possible. Guo et al. [8] proposed the field synergy
principle in analyzing the relationship between the local behavior
and the overall performance of convective heat transfer in two-
dimensional laminar flow. They pointed out that the performance
of convective heat transfer was dependent on the synergy between
temperature and velocity fields. With the same velocity and tem-
perature boundary conditions, the larger the synergy degree was,
the better the convective heat transfer would be. Based on the field
synergy principle, Liu et al. [9–11] considered multi-field synergy
in convective heat transfer by reexamining the physical mecha-
nism of convective heat transfer between fluid and solid wall in
the laminar and turbulence flows. They revealed how heat transfer
enhancement was influenced by multi-field synergy relation asso-
ciated with temperature, velocity and pressure and explained
physical essentials on enhancing heat transfer and reducing flow
resistance. According to the field synergy principle, we can know
that the performance of convective heat transfer is dependent on
the organization of fluid field, and what we need to do is to find
an optimized fluid field. After finding it, a heat transfer enhance-
ment solution which is closest to this optimized fluid field can be
identified and implemented.

Bejan deduced entropy generation expression and analyzed
optimization parameters in heat exchangers or heat transfer
systems by taking minimum entropy generation as optimization
objective [12,13] induced by heat transfer and viscous dissipation.
Xia [3] set thermal potential loss as the evaluation objective and
used viscous dissipation to denote the loss in mechanical energy.
With fixed mechanical energy loss, the optimized velocity field
equation can be derived through functional analysis, in which a
scalar item was unknown. Meng [14] furthered Xia’s analysis by
using Lagrange multiplier to make functional analysis. The field
synergy equation was derived, and each term in the equation
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Nomenclature

A, B, C0 Lagrange multipliers
cp specific heat at constant pressure, J/(kg K)
eh, /h entransy dissipation, W K/m3

Evh entransy, J K
F volume force vector, N
J functional
p pressure, Pa
Qvh heat capacity, J
T temperature, K
U velocity vector, m/s

V volume, m3

Wp power consumption, W

Greek symbols
k thermal conductivity, W/(m K)
q fluid density, kg/m3

l viscosity coefficient, kg/(m s)
X control volume, m3

C control surface, m2
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was identified. Based on his analysis, the heat-transfer enhanced
tubes with two longitudinal vortexes were designed, which exhib-
ited better heat transfer performance. Guo et al. [15] proposed a
new physical quantity – entransy to describe the capability of heat
energy transportation. They also proposed the principle of en-
transy dissipation extremum [16–21] to optimize heat transfer
process by setting fixed viscous dissipation as constraint condition.
Compared with the principle of minimum entropy generation, the
principle of entransy dissipation extremum is more suitable in heat
transfer process optimization. Chen et al. [22–27] optimized heat
exchanger, constructal problems of variable cross-section channel,
‘‘volume-point’’ heat conduction, and so on, with minimum en-
transy dissipation rate as optimization objective.

The power consumed in incompressible fluid flow is partly
stemmed from the fluid viscosity reflecting frictional resistance
and profile resistance, and partly from the momentum change. In
order to reach a maximum amount of heat transfer without exces-
sive power consumption, we can set minimum entransy dissipa-
tion as optimization objective and fixed power consumption as
constraint condition in developing optimization method.
2. Convective heat transfer optimization

Based on the analogies between thermal and electrical conduc-
tions, Guo defined the entransy as half of the product of heat
capacity and temperature:

Evh ¼
1
2

QvhT ð1Þ

where T is temperature, Qvh is heat capacity at constant volume in
general. The entransy dissipation function which represents en-
transy dissipation per unit time and per unit volume was deduced
as [15]:

/h ¼ kðrTÞ2 ð2Þ

where k is thermal conductivity, and rT is temperature gradient.
By setting entransy dissipation as optimization objective and

viscous dissipation as constraint condition, optimization flow field
equation for convective heat transfer was constructed by Meng
[14] as:

qU � rU þrp� lr2U � qcp

2C0
ArT þ qU � rU

� �
¼ 0 ð3Þ

where l is viscosity coefficient, U is velocity vector, q is fluid den-
sity, p is pressure, cp is specific heat at constant pressure, C0 is con-
stant Lagrange multiplier. Scalar Lagrange multiplier A satisfies the
following equation:

qcpU � rAþ kr2A� kr2T ¼ 0 ð4Þ
3. Optimized field equations

As we know that heat transfer enhancement is usually accom-
panied by an undesirable increase in flow resistance. So when deal-
ing with problems of heat transfer enhancement, we need to take
both thermal and flow resistances into consideration. As it is men-
tioned from above, entransy dissipation which can also be defined
as entransy dissipation to represent the irreversibility of a heat
transfer process, is a physical quantity to measure the loss of heat
transfer capability, so we can use it to evaluate the intensity of con-
vective heat transfer enhancement, which is expressed as [15]:

eh ¼ kðrTÞ2 ð5Þ

The entransy dissipation can be regarded as an expression of
the irreversibility of heat transfer process, which is similar as the
entropy generation to that of thermodynamics process. Entransy
always decreases in heat transfer process, while entropy always
increases. The smaller the entransy dissipation, the smaller the
temperature difference of the fluid is, and thereby the smaller
the irreversibility of the heat transfer process is [28].

In the flow of incompressible fluid, the power consumption,
partly from the fluid viscosity and partly from the momentum
change, can be expressed as:

Wp ¼ �U � rp ¼ U � ½qðU � rÞU � lr2U� ð6Þ

From Eq. (6), it can be seen that the power consumption is cor-
related with the velocity field, meanwhile heat transfer character-
istics and thermal resistance of the fluid are correlated with the
temperature field coupling with velocity distribution. Therefore,
optimizing a convective heat transfer process is to find an optimal
velocity field with fixed power consumption which satisfies mini-
mum entransy dissipation leading to small thermal resistance. This
is a typical problem of functional variational. Its deduction is de-
scribed below.

(1) Optimization target: fluid velocity field
(2) Optimization objective: entransy dissipation extremum

expressed as variation:
d
Z

X
ehdV ¼ 0 ð7Þ
(3) Constraint conditions:

Fixed power consumption:Z
X

WpdV ¼ const ð8Þ

Mass conservation of incompressible fluid:

r � U ¼ 0 ð9Þ
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Energy conservation ignoring viscous dissipation:

kr2T � qcpU � rT ¼ 0 ð10Þ

(4) Boundary conditions:
Constant velocity at boundaries, expressed as variation:

dUjC ¼ 0 ð11Þ

Constant viscous shearing stress at boundaries [29], expressed
as variation:

dðlrUÞjC ¼ dðrUÞjC ¼ 0 ð12Þ

Constant wall temperature or heat flux boundaries, expressed
as variation:

dTjC ¼ 0 or dðkrTÞjC ¼ dðrTÞjC ¼ 0 ð13Þ

A function can be constructed by Lagrange multipliers as:

J ¼
Z

X
fkðrTÞ2 þ C0U � ½qðU � rÞU � lr2U� þ Ar � U

þ Bðkr2T � qcpU � rTÞgdV ð14Þ

where multiplier C0 is constant, multipliers A and B are unknown
scalar functions. After finding functional variation of Eq. (14) with
respect to velocity U and temperature T respectively, we can have
the following equations. The variation of Eq. (14) with respect to
T and U yields the following equations [30]:

Within the region X:

q½U � rU þ U � ðr � UÞ� � 2lr2U �rA
C0
� qcpBrT

C0
¼ 0 ð15Þ

�2kr2T þ qcpU � rBþ kr2B ¼ 0 ð16Þ

On the boundary C:

ð2krT � qcpUB� krBÞdT þ kBdðrTÞ ¼ 0 ð17Þ

ðqC0U � U þ C0lrUÞ � dU þ AdU � C0lU � dðrUÞ ¼ 0 ð18Þ

For the momentum conservation, we have:

qðU � rÞU� ¼ �rpþ lr2U þ F ð19Þ

By making an analogy [31] between Eqs. (16) and (19), we let

qU � ðr � UÞ ¼ rA
C0
þrpþ lr2U ð20Þ

where unknown scalar A is determined by Eq. (20) and boundary
condition (18).

Then Eq. (15) can be written as:

qU � rU ¼ �rpþ lr2U þ qcpB
C0
rT ð21Þ

where unknown scalar B is determined by Eq. (16) and boundary
condition (17).

Eq. (21) is the final optimized momentum equation, and its last
term on the right hand represents the additional virtual volume
force to organize optimal flow field, which keeps entransy dissipa-
tion minimum when power consumption is fixed.
Fig. 1. The straight cir
4. Optimized field analysis for convective heat transfer in
laminar flow

Heat transfer enhancement of laminar flow inside straight cir-
cular tube which is a commonly used heat-transfer unit in the
tube-and-shell heat exchangers, which is widely studied in engi-
neering. In order to verify the effect of optimization field equations
deduced above, a computational model shown in Fig. 1 is intro-
duced. Tube inner diameter D is 20 mm, and tube length is
1700 mm. The tube is divided into three sections: entrance length
L1, optimization length L2, exit length L3, and their sizes are 1200,
300 and 200 mm respectively. The fluid flowing inside the tube is
water. Inlet water temperature is set as 300 K, and tube wall tem-
perature 310 K.

The governing equations in the numerical computation include
continuity equation, energy equation, optimized momentum equa-
tion and scalar B equation. The governing equation and the bound-
ary condition for unknown scalar B is determined by Eqs. (15) and
(19), respectively. The CFD software Fluent 6.3 is used for solving
the coupled governing equations, and the SIMPLEC algorithm is
used for coupling pressure and velocity fields. The QUICK discrete
scheme is applied in the momentum and energy equations. To
solve the constraint scalars, we use the user defined function
(UDF) in the Fluent.

In the calculation, we tried different values of Re number and
Wp which is the power consumption within the optimization sec-
tion of 300 mm. The temperature and velocity fields of cross-
section of optimization section at the position z = 1350 mm were
observed and analyzed. Fig. 2 shows the temperature and flow
fields in the cross-section of tube at above mentioned position
when Re = 200 and Wp = 8.01 � 10�7 W, the intensity of secondary
flow is 0.034% of section average flow velocity. Fig. 3 is for the case
when Re = 200 and Wp = 8.36 � 10�7 W, the intensity of secondary
flow is 0.073% of section average flow velocity. The observed re-
sults show that for the same Re number, the solution varies with
Wp within a certain range. If Wp is beyond this range, too small
or too large, it would be impossible to obtain convergence solution.
When Wp increases within a specified range, convergence solutions
can be obtained, and Nu/Nus and f/fs will increase monotonically, in
which Nus and fs are Nusselt number and friction factor in the bare
tube without additional volume force. This suggests that the addi-
tional volume force would increase with the increase in Wp and the
flow field would achieve a better organization, which leads to bet-
ter heat transfer performance. In the meantime, however, if more
power is consumed, flow resistance would increase, too. This trend
is demonstrated in Fig. 4, in which we can find that the effect of
heat transfer optimization can achieve when Re = 200 and
Wp = 8.46 � 10�7 W. At this situation, Nu number with additional
volume force is beyond twice as much as that without additional
volume force, while f is only increased by 1.087 times, which indi-
cates a far greater degree of heat transfer enhancement than flow
resistance increase.

Fig. 5 shows the temperature and flow fields in the cross-
section of tube when Re = 500 and Wp = 5.58 � 10�6 W, the inten-
sity of secondary flow is 0.0076% of section average flow velocity.
Fig. 6 is for the case when Re = 500 and Wp = 6.34 � 10�6 W, the
intensity of secondary flow is 0.017% of section average flow
cular tube model.



(a) (b)

Fig. 2. The temperature field (a) and velocity field (b) in the cross-section of tube (Re = 200, Wp = 8.01 � 10�7 W).

(a) (b)

Fig. 3. The temperature field (a) and velocity field (b) in the cross-section of tube (Re = 200, Wp = 8.36 � 10�7 W).

Fig. 4. Nu/Nus and f/fs varying with Wp (Re = 200).
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velocity. Fig. 7 displays the changes of Nu number and friction
factor before and after adding the volume force when Re = 500.
From Fig. 7, we can find that the degree of heat transfer enhance-
ment is much greater than that of flow resistance increase when
Re = 500 and Wp = 6.65 � 10�6 W. At this situation, Nu number
with additional volume force is 2.96 times as much as that without
volume force, while friction factor is only increased by 1.23 times.

We also make the calculation in other Renumbers. The results
show that for the circular tube at a given Re number, when Wp var-
ied within a specified range in which convergence solution could



(b)(a)

Fig. 5. The temperature field (a) and velocity field (b) in the cross-section of tube (Re = 500, Wp = 5.58 � 10�6 W).

(b)(a)
Fig. 6. The temperature field (a) and velocity field (b) in the cross-section of tube (Re = 500, Wp = 6.34 � 10�6 W).

Fig. 7. Nu/Nus and f/fs varying with Wp (Re = 500).
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be obtained, longitudinal swirl flow with multi-vortexes in differ-
ent shape and structure would be formed in the optimized velocity
field, and the number and shape of the vortexes will change with
Wp and Renumber. The swirl flow field with multi-vortexes would
have far better heat transfer capability than a bare tube without
additional volume force, and its heat transfer intensity grows much
faster than flow resistance increase.

The above analysis for optimized temperature field reveals that
fluid temperature gradient near tube wall is much greater than
that in the central tube. Apart from this, the analysis for optimized
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velocity field demonstrates that the vortexes are all distributed
symmetrically around central tube area, so the velocity gradient
of boundary grows very small, which means that the velocity gra-
dient near the tube wall is not increased too much. A comparison
for the increment of friction factor f in Figs. 4 and 7 makes this
clear. This kind of flow field is consistent with the principle of heat
transfer enhancement in the core flow of tube proposed by Liu
et al. [32,33], who intends to design a flow field in which the dis-
turbance in the boundary flow is kept at the relatively lower level
while the disturbance in the core flow is enhanced greatly, thereby
to realize temperature uniformity in the core flow of tube. So far,
when going back to review the optimization objective and the con-
straint conditions specified in the foregoing part of this paper, we
find that the degree of entransy dissipation reflects the magnitude
of thermal resistance, while power consumption reflects flow resis-
tance. So if we want to reconcile heat transfer with fluid flow, what
we need to do is to decrease thermal resistance as much as possible
while keeping the flow resistance at relatively small level. In this
way, the connotation of resistance deduction gains substantial
embodiment.

In this paper, we have not proposed the practical way to realize
the force field, the multi-vortexes flow field is maintained by the
additional volume force which is a virtual force to form optimal
flow field. As there are no devices inserted in the tube, it only
causes the increase of less than 23% in resistance coefficient f.
We think that this increase in flow resistance is caused by extra
work required by viscous dissipation of the vortexes in the flow
field. However, the deviation may exist, due to the formula we
used in calculating resistance coefficient, which is usually used
for the bare tube. In the practical applications, when some inserts
are adopted to obtain the longitudinal swirl flow with multi-
vortexes in a tube, the friction resistance will be much higher due
to the additional inserts, and the longitudinal vortexes generated
by them decay gradually in the streamwise direction due to the vis-
cous shear force which we have not researched in this paper too.
This additional resistance and the decay property of vortexes will
be considered in our further study to design heat transfer units.
5. Conclusion

By taking minimum entransy dissipation as optimization objec-
tive and fixed power consumption as constraint condition, a gener-
alized functional using Lagrange multiplier was constructed, from
which optimized field equations were obtained by variational
principle.

Numerical solution of flow field in the straight circular tube is
analyzed. It is found that the longitudinal swirl flow with multi-
vortex structure in the core flow of tube can realize excellent heat
transfer performance. Compared to the bare tube, the maximal Nu
number can be increased by 190%, while the friction factor f is only
increased by less than 23%. It is validated that the optimization
method investigated can provide theoretical guidance for design-
ing high-efficiency and low-resistance heat transfer units of heat
exchangers.
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