Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell

Zhongmin Wana,c, Jing Liua, Zhiping Luo b, Zhengkai Tub,⇑ Zhichun Liuc, Wei Liuc

a College of Information Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
c School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

HIGHLIGHTS

► Operation characteristics in a dead-ended PEM fuel cell were addressed.
► Modified flow channel was used to realize water removal.
► A novel method by condensing the moisture in the stack end was introduced.

ABSTRACT

In this paper, the operation characteristic of a dead-ended proton exchange membrane fuel cell (PEMFC) placed with vertical orientation is investigated. The relationship between the channel geometry and the wettability of the gas diffusion layer (GDL) surface is theoretically analyzed. Based on the theoretical analysis, straight flow channels with 2.0 mm width and 1.0 mm depth are used for the experimental investigation and the moisture is condensed at the stack end to improve water removal. The results show that the designed fuel cell can operate for about 1 h at 800 mA cm−2 and the performance of the cell decreases with the increase in the operation temperature. Moreover, the recovered liquid water is corresponded closely to the theoretical values.

1. Introduction

Proton exchange membrane fuel cell (PEMFC) has been considered to be the main substitution of power source for automotives, steady power stations, and submarines due to its high energy conversion efficiency, high power density, quick startup, and low environment pollution [1–21]. Restricted by current formation and proton transportation mechanisms, liquid water generally exists in PEMFC during its operation. Thus, water management is of great importance for PEMFC [22–24]. Liquid water present in the cathode catalyst layer can reduce the accessibility of oxygen to the reaction sites and can possibly lead to flooding in the catalyst layer, gas diffusion layer (GDL), and gas flow channels, especially at high current densities [25]. Understanding and improving liquid water removal throughout the cell are critical in improving PEMFC performance. Many studies have focused on the improvement of water management. Ous and Arcoumanis [26] designed a transparent fuel cell to investigate the simultaneous water droplets characteristics in a serpentine flow channel, and the visualization images showed that the flow channel was blocked by the overlapping of two land-touching droplets and air flow was the most crucial issue to the flooding among the test operating conditions. Owejan et al. [27] used neutron radiography method to investigate the effects of flow field and diffusion layer properties on water accumulation in 50 cm² fuel cells. It was found that cells constructed using diffusion media with lower in-plane gas permeability tended to retain less water and flooding within the electrode layer or at the electrode-diffusion media interface was the primary cause of the significant mass transport voltage loss. Li et al. [28] designed novel bipolar plates based on the determination of an appropriate pressure drop along the flow channel, which could effectively remove water from cells. With their design, no liquid water was observed to flow out of the cell at the anode and cathode channel during the performance tests as confirmed by the neutron imaging technique. Zhu et al. [29,30] investigated the dynamic behavior of liquid water emerging from a GDL pore into a gas flow channel and water droplet dynamics in the gas channel by two-dimensional and three-dimensional numerical simulations, respectively. It was found that the critical velocity decreases with increasing droplet size and
deciding GDL pore diameter and the wettability of the micro-channel surface had a major impact on the dynamics of the water droplet removal. Lu et al. [22] pointed out that channel surface wettability, geometry and orientation were important issues regarding to the water management in PEMFC, and horizontal channel orientation was more prone to slug flow, non-uniform liquid water distribution and unstable operation than vertical channel orientation. Based on the previous research, Jiao and Li [31] pointed out that gas circulation pump was not desirable in this kind of cell due to the potential fire hazards associated with fast gas surface tension, θA and θR are the advancing and receding angles of the droplet, respectively. Wang et al. [44] analyzed the mechanical equilibrium of the drop on the rough surface related to the contact angle hysteresis and deduced that in the critical state, the relations of θA, θR and the Young’s contact angel θ could be expressed as:

\[
\cos \theta = \frac{\cos \theta_A + \cos \theta_R}{2}
\]

(2)

The volume of the droplet coronal can be expressed as,

\[
V = \frac{1}{3} \pi R_c^3 \left(1 - \cos \theta\right)^2 \left(2 + \cos \theta\right) \frac{\sin^3 \theta}{\cos \theta}
\]

(3)

Consequently, droplet removal with the present of gravity requires

\[
\frac{\theta_R - \theta_A}{\theta_A} = 0.2
\]

(5)

Therefore, combining Eqs. (2), (4), and (5), the detachment radius for a specific contact angle can be expressed as:

\[
f = \pi \sigma R_c (\cos \theta_R - \cos \theta_A)
\]

(1)

where \(R_c \) is the bottom radius of the droplet coronal, \(\sigma \) is the liquid-gas surface tension, \(\theta_A \) and \(\theta_R \) are the advancing and receding angles of the droplet, respectively. Wang et al. [44] analyzed the mechanical equilibrium of the drop on the rough surface related to the contact angle hysteresis and deduced that in the critical state, the relations of \(\theta_A, \theta_R \) and the Young’s contact angle \(\theta \) could be expressed as:

\[
\cos \theta = \frac{\cos \theta_A + \cos \theta_R}{2}
\]

(2)

The volume of the droplet coronal can be expressed as,

\[
V = \frac{1}{3} \pi R_c^3 \left(1 - \cos \theta\right)^2 \left(2 + \cos \theta\right) \frac{\sin^3 \theta}{\cos \theta}
\]

(3)

Consequently, droplet removal with the present of gravity requires

\[
\frac{\theta_R - \theta_A}{\theta_A} = 0.2
\]

(5)

Therefore, combining Eqs. (2), (4), and (5), the detachment radius for a specific contact angle can be expressed as:
3. Experimental design

3.1. Experimental system

Graphite plates with straight-channel flow field are used as current collector for the single fuel cells used in this study, and the active area is 75 cm2. The schematic structure of the flow channel was shown in Fig. 2a. The MEAs bought from WUT New Energy Company was fabricated using catalyst coated membrane method. Loading of Pt electrocatalyst (Hispec™ 9100, Johnson Matthew) on both anode and cathode was 0.4 mg cm$^{-2}$. Carbon paper (TGP-060, Toray) hydrophobically treated with PTFE was used as gas diffusion layer. Hydrogen and oxygen supply is controlled by two regulator valves with the absolute operation pressures for the anode and cathode are 2.3 × 105 and 2.6 × 105 Pa, respectively. Both reaction gases are not humidified in the test. Electronic load, cell temperature and voltage are recorded using FCATS G50 produced by Greenlight Innovation Company in Canada. The schematic diagram of the test system is shown in Fig. 2b. Before the test, the constant current mode is applied to control the current load, and the assembled fuel cell is activated by changing the current step magnitude. The geometrical properties of PEM single cell and testing conditions of the experiments are shown in Table 1.

3.2. Experiment scheme

To use gravity for the droplet removal, the cell is placed vertically in the test. In order to investigate the effect of the channel width on the performance of the cell, two geometrical properties mode is applied to control the current load, and the assembled fuel cell is activated by changing the current step magnitude. The geometrical properties of PEM single cell and testing conditions of the experiments are shown in Table 1.

![Fig. 2. Schematic of the single cell and test system. (a) Structure of the single cell. (b) Schematic of test system.](image-url)
of the channel are designed, as described in Table 2. The apparent contact angle of the liquid droplet on the hydrophobic GDL surface is 129° in the anode. To investigate the effect of the wettability on the water removal behavior on the cathode, different hydrophobic disposals with cathode GDL were designed and the contact angle were 110° and 129°, respectively. In addition, performance of the assembled cell at different temperatures is also investigated in detail. As self-water-removal ability is very important for a dead-ended fuel cell, the amount of liquid water in the cathode was recorded every 10 min, and to evaluate the effect of the condenser on performance and heat removal ability during the water recovery process, the coolant water flux is set at 100 mL min⁻¹, the inlet and outlet temperatures are monitored by two T-thermocouples with the accuracy of ±0.01 °C, respectively. The fuel cell was pre-activated by increasing current with fully humidified H₂/O₂ for about 3 h under ambient pressure with open-ended before the polarization curves were recorded to evaluate the initial performance of the cell.

4. Results and discussions

4.1. The detachment radius of the liquid droplet

Fig. 3 shows the critical detachment radius evolvement with respect to different hydrophobic contact angles at different temperatures. The properties of liquid water at different temperature are presented in Table 3. As can be seen, the critical radius decreased rapidly with the increase in contact angle, indicating that the wettability of GDL interface played an important role on the self-detachment of the liquid droplet. The effect of the properties on the detachment radius was not obvious and the evolvements of the detachment radius were nearly overlapped at 65 °C and 80 °C. Generally, GDL carbon fibers in our MEAs were both hydrophobic to different hydrophobic contact angles at different temperatures. The effect of wettability on the cell performance, GDL with different hydrophobic disposals were used in the cathode, and the hydrophobic contact angle in the cathode GDL in Fig. 4c varied from 129° to 110°. The voltage decreased from 0.72 V to 0.60 V in each cycle (about 1.3 min) at 65 °C. The main reason was that, with the decrease of the contact angle, the critical detachment radius was increased from 1.0 mm to 1.5 mm. In this case, the hysteresis force was larger than gravity and generated liquid water could not be removed from the flow channel, resulting in the “flood” of the catalyst layer.

Fig. 5 shows the polarization curve at 65 °C. I–V data were obtained by the current sweep from 0 to 75 A, and the polarization curve was recorded after the cell voltage was stable. In addition, the assembled cell can also reach the stable voltage during the above procedure at 1000 mA cm⁻², indicating that the self-water-removal still works well. The power generation efficiencies were all above 55% while the current density is below 1000 mA cm⁻² in this dead-ended cell with dry reaction gases.

4.3. Relationship between the operational temperature and resistance

Fig. 6 shows the cell resistances and voltages at different temperatures with 2.0 mm width channel under 800 mA cm⁻². As could be seen, the resistance increases with the increase in the operation temperature. According to literature [1], the saturated water vapor pressure increases exponentially with respect to the temperature. For instance, the saturated water vapor pressures are about 2.5 × 10⁶ Pa and 4.7 × 10⁶ Pa at 65 °C and 80 °C, respectively, and with the increase of the temperature, most of the liquid water in MEA may evaporate into vapor phase, leading to the

Table 2

Geometrical properties of channel.

<table>
<thead>
<tr>
<th>Cases</th>
<th>Flow field width (mm)</th>
<th>Flow field depth (mm)</th>
<th>Field ridge width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Case2</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 3

Calculated detachment radius with respect to different temperatures [46].

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>ρ (kg m⁻³)</th>
<th>σ (N m⁻¹)</th>
<th>hₑ (J kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>9.80 × 10²</td>
<td>6.53 × 10⁻²</td>
<td>2.35 × 10⁶</td>
</tr>
<tr>
<td>80</td>
<td>9.72 × 10²</td>
<td>6.26 × 10⁻²</td>
<td>2.31 × 10⁶</td>
</tr>
</tbody>
</table>
decrease in water content in the membrane. Consequently, the resistance of the cell increases with the increase in operation temperature. In addition, the peak value of the cell voltage of about 0.691 V was observed at 65 °C, with the voltage increasing rate of 2.07 mV °C⁻¹ before 65 °C and decreasing rate of 2.04 mV °C⁻¹ after 65 °C, respectively. This non-monotonic behavior of voltage variation with temperature indicated that the catalyst activity was the dominant effect on the cell voltage before 65 °C, and the dominant effect on cell voltage after 65 °C would be an increase in electrical resistance, presumably from the membrane being drier at 80 °C.

4.4. Water removal

The amount of recovered water in the dead-ended cell with 2.0 mm width channel was shown in Fig. 7. The collected water amounts corresponded closely to the theoretical values at 65 °C and 80 °C, respectively. The theoretical water generated rate is expressed as

\[m_{\text{H}_2\text{O}} = \frac{I}{2F}M_{\text{H}_2\text{O}} \]

(7)

where \(I \) is the current, \(F \) is the Faraday constant and \(M_{\text{H}_2\text{O}} \) is the molar weight of water.

Most of the generated water was collected in the outlet. Fig. 7 demonstrated that, liquid water generated in the flow channel would drop down spontaneously from the GDL surface and liquid water gathered at the bottom of the flow channel could flow out from the outlet of the cell smoothly. Hence, proper geometries in

Fig. 4. Cell voltages with respect to different channel width and wettability. (a) 1.0 mm channel width with the contact angle of 129° at the cathode GDL (b) 2.0 mm channel width with the contact angle of 129° at the cathode GDL (c) 2.0 mm channel width with the contact angle of 110° at the cathode GDL.

Fig. 5. Polarization curve and efficiency of cell with 2.0 mm width channel.

Fig. 6. Cell resistance and voltage with respect to temperature. Lines are linear fit to the experimental data.
the flow channel and outlet structure could help the water removal in a dead-ended fuel cell. Moreover, the recovery water amount was slightly less than that when the outlet gas was condensed. However, it was not enough to evaluate the advantage of the condenser used in the system due to the measure error in this single cell. Fig. 8 shows the direct evidence of the advantage with condensation used for the water removal according to heat transfer analysis. Assuming all the generated water was condensed into liquid, the released heat due to phase change could be calculated as

\[Q = m_{\text{H}_2\text{O}}h_{fg} = \frac{1}{2F}M_{\text{H}_2\text{O}}h_{fg} \]

where \(h_{fg} \) was the latent heat of water vapor. The heat removed by the condenser could be obtained as

\[Q_{\text{re}} = Cm\Delta T = Cm(T_{\text{out}} - T_{\text{in}}) \]

where \(C \) and \(m \) were the specific heat and mass flow rate of liquid water, respectively. \(T_{\text{out}} \) and \(T_{\text{in}} \) were the outlet and inlet temperatures of the coolant water, and \(\Delta T \) was their difference. The average temperature difference was 1.13 °C, and in this case, 58.7% of the theoretical heat was removed by the coolant water. Therefore, more than half of the vapor water was condensed by the condenser and the condensation of the outlet gas could enhance the water transporting ability inside the cell. It should be noted that the diameter of the outlet line is 6.0 mm in this experiment. Once the optimal design with the increased outlet line diameter was applied, more generated heat could be removed by condensation.

Fig. 9 shows the time of the first liquid droplet coming out from the cell into the end line. The use of condenser could reduce the threshold time for the water removal, and the time was shorter with the increased operation temperature. The introduced condenser could make the liquid water move out from the cell smoothly. Water vapor condensed to liquid in the outlet line and inside the cell accordingly would migrate to the outlet to complement the loss due to phase change. As a consequence, liquid water inside the fuel cell would evaporate, which would decrease the probability of the “water flood”.

5. Conclusions

The operation characteristic of a H\(_2\)/O\(_2\) proton exchange membrane fuel cell with an active area of 75 cm\(^2\) in the dead-ended condition was investigated both theoretically and experimentally. The following conclusions can be drawn:

- A proton exchange membrane fuel cell can operate in a dead-ended with an optimization design. Fuel cell could operate for about 1 h at 800 mA cm\(^{-2}\) with a modified flow channel width of 2.0 mm.
- The resistance increases with the increase in operation temperature. However, the cell voltage turns on a “parabola” configuration and reaches the best performance at 65 °C at 800 mA cm\(^{-2}\) under this dead-ended condition.
- Moisture condensed in the stack end is helpful for the water removal and the recovered water amounts are corresponded closely to the theoretical values at different temperatures.

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Nos. 51036003, 51276071, 51106046 and 50906026), and the Fundamental Research Funds for the Central Universities (Nos. 2012IV084, 2011TS079).

References