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A fractal analysis of permeabilities for porous media, both saturated and unsaturated,
is presented based on the fractal nature of pores in the media. Both the fractal-phase
permeability and the fractal relative permeability are derived and found to be a function
of the tortuosity fractal dimension, pore-area fractal dimension, phase fractal dimension,
saturation, and microstructural parameters. The proposed models for permeabilities—
both the phase permeability and the relative permeability—do not contain any empirical
constant. The validity of the present analysis is verified by a comparison with the existing
measurements, and excellent agreement between the model predictions and experimental
data is found. In addition, the present work reveals that the relative permeability depends
not only on saturation but also on the two fractal dimensions, pore fractal dimension (at
porosity greater than 0.90), and tortuosity fractal dimension, which characterize the
fractal characters of capillaries in porous media. The two fractal dimensions may be the
two of the important mechanisms affecting the relative permeability in porous media, and
this is a supplement to the available conclusion on relative permeability. © 2004 American
Institute of Chemical Engineers AIChE J, 50: 46–57, 2004
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Introduction

The permeabilities for porous media, both saturated and
unsaturated, have received much attention (De Wiest, 1969;
Bear, 1972; Bowles, 1984; Jumikis, 1984; Kaviany, 1995;
Panfilov, 2000) due to practical applications, including chem-
ical engineering, soil science and engineering, oil production,
polymer composite molding, and heat pipes. Since the micro-
structures of porous media are usually disordered and ex-
tremely complicated, this makes it very difficult to analytically
find the permeability of the media, especially for unsaturated
(or multiphase) porous media.

Conventionally, the permeabilities of porous media were
found by experiments (Levec et al., 1986; Sasaki et al., 1987;
Wang et al., 1994; Wu et al., 1994; Shih and Lee, 1998; Chen
et al., 2000). Besides, much effort was also devoted to numer-
ical simulations of permeabilities for porous media. Simacek
and Advani (1996) performed the numerical solution by reduc-
ing a two-dimensional problem to a one-dimensional equation.
Adler and Thovert (1998) applied a fourth-order finite differ-
ence scheme for permeabilities of real Fontainebleau sand-
stone. Although no adjustable parameter was involved, a large
discrepancy between the average numerical permeability (plot-
ted against porosity) and the experimental data was observed.
Ngo and Tamma (2001) applied the finite-element method to
calculate the permeability for the porous fiber mat by assuming
the Stokes flow in the intertow region and the Brinkman’s flow
inside the tow region. Compared with single-phase (or satu-
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rated) flow in porous media, the multiphase (or unsaturated)
immiscible flows in porous media are not well understood. The
multiphase immiscible flows in porous media are very impor-
tant in practical applications such as the petroleum industry,
chemical engineering, and soil engineering. The lattice Boltz-
mann method (LBM) (Benzi et al., 1992; Sahimi and Mukho-
padhyay, 1996; Martys and Chen, 1996; Chen and Doolen,
1998), based on the Navier-Stokes equation coupled with Dar-
cy’s law, has been extensively used to simulate multiphase
flows through porous media in order to understand the funda-
mental physics associated with enhanced oil recovery, includ-
ing relative permeabilities. The LBM is particularly useful for
complex geometrical boundary conditions and varying physical
parameters. However, the results either from numerical simu-
lations or from experiments are usually expressed as correla-
tions with one or more empirical constants, or as curves, and
the mechanisms behind the phenomena are thus often ignored.
In order to get a better understanding of the mechanisms for
permeability, the analytical solution for permeability of porous
media becomes a challenging task.

Recently, Yu and Lee (2000) developed a simplified analyt-
ical model for evaluating the permeabilities of porous fabrics
used in liquid composite molding. This permeability model,
which is related to porosity and architectural structures of
porous fabrics, is based on the one-dimensional (1-D) Stokes
flow in macropores between fiber tows and on the 1-D Brink-
man flow in micropores inside fiber tows. Good agreement
between theoretical predictions and experimental results was
found. However, this model may only apply to those media
whose macropores can be simplified as one-dimensional chan-
nels. So this and several other models may not be applicable to
random/disordered porous media. In addition, this model is
only suitable for saturated porous media.

Ransohoff and Radke (1988) applied the circular and trian-
gle capillary models to numerically simulate the flow resistance
for laminar flow through unsaturated porous media and studied
the dependence of flow resistance on corner geometry, surface
shear viscosity, and contact angle.

Katz and Thompson (1985) presented experimental evidence
indicating that the pore spaces of a set of porous sandstone
samples (in nature) are fractals and are self-similar over 3 to 4
orders of magnitude in length extending from 10 Å to 100 �m.
They argued that the pore volume is a fractal with the same
fractal dimension as the pore–rock interface. This conclusion
was supported by correctly predicting the porosity from the
fractal dimension, which was measured by a log-log plot of a
number of pores vs. the pore size, and a fractal correlation, � �
C(l1/l2)3�Df, is presented to correlate the measurements on a
variety of porous sandstone samples (pores). In the correlation,
� is the porosity of porous sandstone, Df (� 2 � 3 in three
dimensions) is the fractal dimension of pores, C is a constant of
order one, and l1 and l2 are the lower and upper limits,
respectively, of the self-similar regions. Krohn and Thompson
(1986) also carried out the experiments on sandstone, and the
fractal dimensions of the five sandstone pores were found to be
in the range of 2.55–2.85 in three dimensions. Figure 1 (Krohn
and Thompson, 1986) displays one of the fractal scaling laws
of five sandstone pores. In the figure, the negative slope of the
solid line gives the fractal dimension D � 2.75 obtained by
fitting the measurements from the automatic technique. This
figure shows that the sandstone pores are fractal objects in

nature. Readers may also consult the paper by Krohn and
Thompson (1986) for more evidence that the porous media are
fractals in nature.

Smidt and Monro (1998) performed experimental investiga-
tions on the images of laboratory-made synthetic sandstone and
on modeled sandstone. Their results showed that the pore space
of both the synthetic and the modeled sandstone was found to
be fractals and the fractal scaling laws were obtained by the
box-counting method (see Figure 2). Figure 2 presents the
fractal scaling law for the laboratory synthetic stone pores, and
the slope of the log(Nd) � log(1/d) plot shows fractal dimen-
sion 1.89 (in two dimensions) obtained by the box-counting
method (count the number, Nd, of boxes of side length d for
covering the pore space). This suggests that the laboratory
synthetic stone pores are also fractal objects.

According to the fractal character of real porous media, Yu
and Cheng (2002) developed a fractal permeability model for
bidispersed saturated porous media (see Figure 3), and this
fractal model is also applicable to porous fabrics (Yu et al.,
2002) (see Figure 4; Yu et al., 2001). It is seen that the random
porous fabric is also a fractal medium. For more fractal micro-
structures of fabrics, readers may consult the paper by Yu et al.
(2001). Although this model does not contain any empirical
constant, and good agreement is found between the model
predictions and experimental data, it does not apply to unsat-
urated porous media. The saturated porous medium is, in fact,
only the special case of the unsaturated porous medium. It is
therefore more meaningful for practical applications to develop
an analytical solution for the permeability of unsaturated (or
multiphase) porous media. Once the credible permeability is
obtained, it also can be used to analyze the heat and mass
transfer in unsaturated porous media such as soil (Liu et al.,
1995, 1998).

In this article, we focus our attention on the derivation of an
analytical fractal model for both the phase and relative perme-
ability of two-phase porous media based on the available
evidence that porous media in nature are fractal objects (Katz
and Thompson, 1985; Krohn and Thompson, 1986; Young and
Crawford, 1991; Perfect and Kay, 1991; Smidt and Monro,
1998; Yu and Li, 2001; Yu et al., 2001, 2002; Yu and Cheng,
2002). This article is organized as follows: the following sec-
tion describes the fractal characteristics of microstructures of

Figure 1. Fractal scaling law from measurement of Co-
conino sandstone pores by the automatic
technique (Krohn and Thompson, 1986).
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porous media, which are the theoretical bases for the present
fractal analysis of permeability for porous media. The complete
fractal permeability models for both saturated and unsaturated
porous media are given in the third section. The results and
discussions are arranged in the fourth section, and then come
the concluding remarks.

The Fractal Description of Microstructures of
Porous Media

Porous media such as soil, sandstones in an oil reservoir,
packed beds in chemical engineering, fabrics used in liquid
composite molding, and wicks in heat pipes consist of numer-
ous irregular pores of different sizes spanning several orders of
magnitude in length scales. The pore in porous media plays a
remarkable role in fluid flow and heat transfer in porous media.
The conventional method for description of characteristics of
porous media is based on the volume average (Kaviany, 1995)

over the considered medium, and the significant influence of
microstructures on flow is thus ignored. Fortunately, the fractal
nature of pores and pore fluids may provide us with a better
understanding of the mechanisms of flow and transport prop-
erties, such as the permeability in porous media.

It is known that the cumulative size-distribution of islands on
the earth’s surface follows the power law N( A � a) � a�D/ 2

(Mandelbrot, 1982), where N is the total number of islands of
area ( A) greater than a, and D is the fractal dimension of the
surface. Mandelbrot (1982) also pointed out that the sponge
gap’s (i.e., pores) size distribution is analogous to islands and
clusters and satisfies the cumulative distribution function,
N(L � �) � ��D. Majumdar and Bhushan (1990) used this

Figure 3. (a) Image photo (Yu and Cheng, 2002) of a
bidispersed medium at porosity 0.52, where
the black and the white regions are pores and
clusters formed by agglomeration of copper
particles; since the micropores inside clusters
are very small and the copper particles are
soft, it is difficult to see the micropores inside
clusters after the sample has been polished,
and (b) the fractal scaling law obtained by the
box-counting method applied to (a) for box
number N(L ≥ �) vs. box size � covering the
space.

Figure 2. (a) Image of the laboratory-made synthetic
sandstone (the white are stones and the black
are pores), and (b) the fractal scaling law ob-
tained by the box-counting method applied to
the image (Smidt and Monro, 1998).
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power law to describe the contact spots on engineering sur-
faces, and the power-law relation is

N� A � a� � �amax

a �Df/ 2

(1)

where amax � g�max
2 , a � g�2, with � being the diameter of

a spot and g being a geometry factor. Compared with the
islands on earth or spots on engineering surfaces, the pores in
porous media are also analogous to the islands on earth and to
the spots on engineering surfaces. The cumulative size-distri-
butions of pores whose sizes are greater than or equal to � have
been proven to follow the fractal scaling law

N�L � �� � ��max

� �Df

(2)

where Df is the pore-area fractal dimension, 1 � Df � 2, and
�max is the maximum pore size. The fractal power-law behavior
(Eq. 2) has been proven to be correct by correlating the data
from the box-counting method applied to a number of real

porous medium samples with significantly different micro-
structures (Yu et al., 2001; Yu and Li, 2001; Yu and Cheng,
2002; Yu et al., 2002). For more about the nature of fractals of
porous media, readers may also consult the references by Katz
and Thompson (1985), Krohn and Thompson (1986), Young
and Crawford (1991), Perfect and Kay (1991), Smidt and
Monro (1998).

Differentiating Eq. 2 with respect to � results in the number
of pores whose sizes are within the infinitesimal range � to � �
d�

�dN � Df�max
Df ���Df�1�d� (3)

where d� � 0. The negative sign in Eq. 3 implies that the
island or pore number decreases with the increase in island or
pore size, and �dN � 0. The number of pores from Eq. 2
becomes infinite as � 3 0, which is one of the properties of
fractal objects (Mandelbrot, 1982). Equation 2 describes the
scaling relationship of the cumulative pore population. The
total number of pores or islands or spots, from the smallest
diameter �min to the largest diameter �max, can be obtained
from Eq. 2 as (Yu and Li, 2001; Yu and Cheng, 2002)

Nt�L � �min� � ��max

�min
�Df

(4)

Dividing Eq. 3 by Eq. 4 gives

�
dN

Nt
� Df�min

Df ���Df�1�d� � f���d� (5)

where f(�) � Df�min
Df ��(Df�1) is the probability density func-

tion, which satisfies the following condition

f��� � 0 (6)

Patterned after probability theory, the probability density func-
tion, f(�), should satisfy the following relationship

�
0

	

f���d� � �
�min

�max

f���d� � 1 � ��min

�max
�Df

� 1 (7)

It is clear that Eq. 7 holds if and only if (Yu and Li, 2001)

��min

�max
�Df

� 0 (8)

is satisfied. Equation 8 implies that �min � �max must be
satisfied for fractal analysis of a porous medium; otherwise, the
porous medium is a nonfractal medium. For example, if �min �
�max, both Eqs. 7 and 8 do not hold. Equation 8 can be
considered to be a criterion of whether a porous medium can be
characterized by fractal theory and technique (Yu and Li,
2001). This means that if Eq. 8 does not hold, the porous
medium is a nonfractal medium, and the fractal theory and
technique are not applicable to the medium. However, in gen-
eral, �min/�max � 10�2 or �10�2 in porous media, and Eq. 8

Figure 4. (a) Image photo of the U750 random porous
fabric after magnification of 100, and (b) the
fractal scaling law obtained by the box-count-
ing method applied to (a) for box (pore) number
N(L ≥ �) vs. box (pore) size � covering the
space (Yu et al., 2001).
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holds approximately. Thus, the fractal theory and technique can
be used to analyze the characteristics of porous media.

For saturated porous media, the pore area fractal dimension
Df is given by (Yu and Li, 2001)

Df � d �
ln �

ln
�min

�max

, (9)

where � is the effective porosity of porous media, d � 2 in two
dimensions and d � 3 in three dimensions. Equation 9 exactly
holds for exactly self-similar fractal geometries, such as Sier-
pinski carpet and Sierpinski gasket (�max and �min are the upper
and lower limits of self-similarity, respectively). However, Eq.
9 approximately holds for random or disordered porous media.
For porous media, �max and �min are the maximum and mini-
mum pore diameters, respectively, in a unit cell or in a sample,
implying that the statistical self-similarity exists in the range of
�max � �min in a porous medium. Equation 9 shows that the
pore area fractal dimension is a function of porosity and mi-
crostructures, �min and �max.

A porous medium with various pore sizes can be considered
as a bundle of tortuous capillary tubes with variable cross-
sectional areas. Let the diameter of a capillary in the medium
be � and its tortuous length along the flow direction be Lt(�).
Due to the tortuous nature of the capillary, Lt(�) � L0, with L0

being the representative length. For a straight capillary,
Lt(�) � L0. Wheatcraft and Tyler (1988) developed a fractal
scaling/tortuosity relationship for flow through heterogeneous
media, and the scaling relationship is given by Lt(�) �
�1�DTL0

DT where � is the length scale of measurement. We
argue that the diameters of capillaries are analogous to the
length scales, �, which means that the smaller the diameter of
a capillary, the longer the capillary. Therefore, the relationship
between the diameter and length of capillaries also exhibits a
similar fractal scaling law

Lt��� � �1�DTL0
DT (10)

where DT is the tortuosity fractal dimension, with 1 � DT �
2 in two dimensions, representing the extent of the convolut-
edness of capillary pathways for fluid flow through a medium.
Note that DT � 1 represents a straight capillary path, and a
higher value of DT corresponds to a highly tortuous capillary.
In the limiting case of DT � 2, we have a highly tortuous line
that fills a plane (Wheatcraft and Tyler, 1988). Equation 10
diverges as � 3 0, which is one of the properties of fractal
streamlines (Wheatcraft and Tyler, 1988).

Equations 2–3 and 8–10, which provide a complete descrip-
tion of the fractal characteristics of porous media, form the
basis of the present fractal analysis of permeabilities, and this
will be derived in the following sections.

Fractal Permeabilities for Porous Media
Fractal permeability for saturated porous media

Consider a unit cell consisting of a bundle of tortuous
capillary tubes with variable cross-sectional area. The total
volumetric flow rate Q through the unit cell is a sum of the flow

rates through all the individual capillaries. The flow rate
through a single tortuous capillary is given by modifying the
well-known Hagen-Poiseulle equation (Denn, 1980) to give

q��� � G

P

Lt���

�4

�
(11)

where G � 	/128 is the geometry factor for flow through a
circular capillary, � is the hydraulic diameter of a single
capillary tube, � is the viscosity of the fluid, 
P is the pressure
gradient, and Lt is the length of the tortuous capillary tube. The
total flow rate Q can be obtained by integrating the individual
flow rate, q(�), over the entire range of pore sizes from the
minimum pore �min to the maximum pore �max in a unit cell.
According to Eqs. 3, 10, and 11, we have

Q � ��
�min

�max

q���dN��� � G

P

�

A

L0

L0
1�DT

A

Df

3 
 DT � Df
�max

3�DT

� �1 � ��min

�max
�DT��min

�max
�3�DT�2Df� (12)

where Df is the pore-area fractal dimension, and 1 � Df � 2
in two dimensions. Since 1 � DT � 2 and 1 � Df � 2, the
exponent 3 � DT � 2Df � 0 and 0 � (�min/�max)3�DT�2Df �
1. Also, according to the Yu and Li’s criterion (Yu and Li,
2001), (�min/�max)Df � 0 (because (�min/�max) � 10�2). It
follows that Eq. 12 can be reduced to

Q � ��
�min

�max

q���dN��� � G

P

�

A

L0

L0
1�DT

A

Df

3 
 DT � Df
�max

3�DT

(13)

Using Darcy’s law, we obtain the expression for the perme-
ability of a porous medium as follows

K �
�L0Q


PA
� G

L0
1�DT

A

Df

3 
 DT � Df
�max

3�DT (14)

which indicates that the permeability is a function of the
pore-area fractal dimension Df, tortuosity fractal dimension DT

and structural parameters, A, L0 and �max. Equations 13 and 14
indicate that the total flow rate and total permeability are very
sensitive to the macropore �max, and the total flow rate and total
permeability are mainly determined by the maximum/macro
pore �max. This is consistent with the practical situation.

For straight capillaries, DT � 1, Eqs. 13 and 14 can be
reduced to

Q � G

P

�

A

L0

1

A

Df

3 � Df
�max

4 (15)

K � G
1

A

Df

4 � Df
�max

4 (16)
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respectively. Equations 13–16 present the single-phase flow
rates and single-phase permeabilities (also called absolute per-
meabilities). Equations 13–16 indicate that the flow rate and
permeability are very sensitive to the maximum pore size �max.
It is also shown that the higher the fractal dimension Df, the
larger the flow rate and the permeability value. From Eqs.
13–16, it can be seen that the flow rate and the permeability
will reach the maximum possible values as the pore-area fractal
dimension approaches its maximum possible value of 2. This is
consistent with fractal theory. Equations 13–16 are valid not
only for isotropic porous media but also for anisotropic porous
media. For anisotropic porous media, we only need to calculate
the principal permeabilities (Yu et al., 2002) in the principal
directions by separately using Eqs. 14 or 16, then finding the
other permeability components.

Fractal permeability for unsaturated porous media

We now extend the preceding analysis to the permeability
for unsaturated porous media. The unique difference between
the saturated and unsaturated porous media is that for saturated
porous media there is only a single fluid such as water filled
with pores or capillary pathways. In an unsaturated porous
media there are at least two different fluids, such as water and
gas. This means that pores are partially filled with water and
gas. Figures 5a and 5b display those typical pores, and Figure
5c shows a simplified model for the cross section of a capillary
tube partially filled with water and gas. From Figure 5c, we can
obtain the pore volume, Vp, and the volume, Vw, occupied by
water or wetting phase as

Vp � 	�2/4 (17)

and

Vw � Vp � Vg � 	�2/4 � 	�g
2/4 (18)

respectively, where � and �g are the diameter of a capillary
pathway and the diameter of the nonwetting (such as gas) phase
pathway, and Vg is the volume occupied by a nonwetting fluid
(such as gas). According to the definition for saturation, Sw, we
have

Sw �
Vw

Vp
� 1 � ��g

� �
2

(19)

and

Sg �
Vg

Vp
� ��g

� �
2

(20)

Obviously, Eqs. 19 and 20 satisfy Sw � Sg � 1, which is
expected. From Eqs. 19 and 20 the diameter for nonwetting
fluid (such as gas) can be expressed as

�g � ��Sg � ��1 � Sw (21)

Equation 21 denotes that �g � 0 as Sw � 1 and �g � � as
Sw � 0, and vice versa. This is expected and is consistent with
the physical situation.

The volume, Vw, occupied by the wetting fluid (such as
water) can be written as

Vw � 	�2/4 � 	�g
2/4 � 	�w

2 /4 (22)

Figure 5. (a) Spontaneous spreading of oil blobs in a
capillary (Chatzis et al., 1988), (b) possible fluid
saturation state in sandstone (Bear, 1972), and
(c) a simplified model for the cross section of a
capillary tube partially filled with water and
gas.
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where �w is the effective diameter of wetting fluid occupying
the cross section of a capillary pathway. Again, according to
the definition of saturation

Sw � Vw/Vp � �w
2 /�2 (23)

This results in

�w � ��Sw (24)

Equation 24 indicates that �w � 0, as Sw � 0, and �w � �,
as Sw � 1, and vice versa. This is again expected and is
consistent with the physical situation. Usually, 0 � Sw � 1,
such as saturation in soil, in which pores are partially filled
with fluid such as water, that is, the two phases (such as water
and gas) coexist in soil. From Eqs. 21 and 24, we can directly
write the effective maximum and the smallest diameters for
wetting and nonwetting fluids in the largest and smallest pores
(or capillary tubes) as

�max,w � �max�Sw (25)

�min,w � �min�Sw (26)

�max,g � �max�1 � Sw (27)

�min,g � �min�1 � Sw (28)

The volume fractions, �w and �g, for the wetting phase and
the nonwetting phase fluids in a unit cell are given by (Bear,
1972)

�w � �Sw (29)

�g � ��1 � Sw� (30)

respectively, and clearly �w � �g � �.
The permeations of both wetting and nonwetting fluids play

important roles in unsaturated (or multiphase) porous media.
Muskat and Meres (1936) recommended that the phase perme-
abilities Kw and Kg be treated as isotropic and given by

Kw � Kkrw (31)

Kg � Kkrg (32)

or

krw � Kw/K (33)

krg � Kg/K (34)

where K is the absolute permeability (given by Eq. 14) used in
the single-phase flows, and krw and krg are the relative perme-
abilities of the w and g phases, respectively.

In this work, the single-phase fractal permeability Eq. 14 is
extended to the phase fractal permeabilities, Kw and Kg (krw

and krg), under the following assumptions similar to those by
Kaviany (1995):

(1) The Darcy (Stokes) flow is applicable with a negligible
interfacial drag in two-phase porous media.

(2) The body force is neglected.
(3) The liquid flow is not coupled with gas flow.
(4) The viscosities of the liquid and gas phases are indepen-

dent of each other.
The tortuosity fractal dimension, DT, is usually determined

by the box-counting method or Monte Carlo method, and an
analytical expression for DT has not yet been developed. In this
work, we also assume that the wetting and the nonwetting
phases flow through tortuous paths have approximately the
same tortuosity as the single-phase flow, that is, DT � DT,w �
DT,g � 1.10 (Yu and Cheng, 2002) measured using the
box-counting method (see Figure 6). Figure 6a depicts one of
the possible tortuous streamlines passing through the bidis-
persed porous medium, and Figure 6b is the fractal scaling law
measured by the box-counting method applied to the tortuous
streamline. Using the Monte Carlo simulation, Wheatcraft and
Tyler (1988) obtained the averaged tortuous streamline fractal
dimension DT � 1.081 for flow through heterogeneous media
(see Figure 7). Figure 7a demonstrates the simulation results
for tortuous streamlines by a fractal random-walk model, and
Figure 7b is a plot of fractal travel distance, LF, vs. the scale of
observation, Ls, for the fractal random-walk model. Their
Monte Carlo simulation result, DT � 1.081, is very close to
the averaged result, DT � 1.10, obtained by the box-counting
method (Yu and Cheng, 2002). This work uses DT � 1.10, in
calculating permeability.

Applying the analogy between the Darcean single-phase and

Figure 6. (a) One of possible tortuous streamlines pass-
ing through the bidispersed porous medium,
and (b) tortuosity fractal dimension, DT � 1.12,
measured for (a) by the box-counting method
at porosity of 0.52 (Yu and Cheng, 2002).
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two-phase flows, and modifying the single-phase fractal per-
meability model, Eq. 14, by replacing �max in Eq. 14 with Eqs.
25–28, and fractal dimension Df (Eq. 9) with Df,w and Df,g, we
can obtain the phase fractal permeabilities for the wetting and
nonwetting fluids

Kw � G
L0

1�DT

A

Df,w

3 
 DT � Df,w
�max,w

3�DT

� G
L0

1�DT

A

Df,w

3 
 DT � Df,w
��max�Sw�3�DT (35)

Kg � G
L0

1�DT

A

Df,g

3 
 DT � Df,g
�max,g

3�DT

� G
L0

1�DT

A

Df,g

3 
 DT � Df,g
��max�1 � Sw�3�DT (36)

respectively. Equations 35 and 36 reveal that the phase perme-
ability for wetting and nonwetting fluids in porous media is a
function of saturation (Sw), fractal dimensions (DT, Df,w, or
Df,g), and microstructure parameters (�max, A, and L0). It can
be seen that the present fractal phase permeabilities do not
contain any empirical constant.

In Eqs. 35 and 36, the fractal dimensions Df,w and Df,g can
be obtained by extending Eq. 9 and inserting Eqs. 25–30 as

Df,w � d �
ln �w

ln
�min,w

�max,w

� d �
ln�Sw��

ln
�min

�max

(37)

Df,g � d �
ln �g

ln
�min,g

�max,g

� d �
ln��1 � Sw���

ln
�min

�max

(38)

Compared with Eq. 37, it is seen that Eq. 9 is only a specific
case of Sw � 1, and Eq. 37 is a more general form for area
fractal dimension in porous media, including the saturated and
unsaturated porous media.

We can now turn our attention again on the relative perme-
abilities for the wetting and nonwetting phases. Noting Eqs. 14,
25–28, 33–36, we arrive at

krw �
Kw

K
�

3 
 DT � Df

3 
 DT � Df,w

Df,w

Df
Sw

�3�DT�/ 2 (39)

krg �
Kg

K
�

3 
 DT � Df

3 
 DT � Df,g

Df,g

Df
�1 � Sw��3�DT�/ 2 (40)

It is evident that the relative permeability is a function of
saturation Sw and fractal dimensions Df, DT, and Df,w (or
Df,g), and there is no empirical constant in this fractal relative
permeability model.

Results and Discussion
Phase fractal dimensions

The fractal theory requires that the values of fractal dimen-
sions Df,w and Df,g be in the range of 1 and 2 in two dimensions
based on the definition given by Eq. 2. To be valid, we first
check/calculate the phase fractal dimensions, Df,w and Df,g.
For this purpose, we take the bidispersed porous media (Yu and
Cheng, 2002) as samples for study, because they have been
proven to be fractal media. The bidispersed porous structure, as
shown in Figure 3a, is composed of clusters (at the macro
level), which are agglomerated by small particles (at the micro
level). Figure 3b demonstrates the cumulative distribution for
pore sizes. The pore-area fractal dimension Df can be deter-
mined by the value of the slope of a linear fit through data on

Figure 7. (a) Fractal random-walk model to simulate the
flow through heterogeneous medium, and (b)
fractal travel distance, LF, vs. scale of obser-
vation Ls for the fractal random-walk model
with the averaged tortuosity fractal dimension,
DT � 1.081 (Wheatcraft and Tyler, 1988).
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a log-log plot of the cumulative number of box numbers
(pores), N(L � �), vs. the box (pore) size, �.

Since the clusters and particles within the clusters are ran-
domly distributed, this leads to macropores and micropores of
various sizes in a bidispersed porous medium. The bidispersed
porous media are widely used as wicks in the evaporators of
heat pipes. For saturated (or single-phase) bidispersed porous
media, the pore-area fractal dimension, Df, also can be given
by Eq. 9 with (Yu et al., 2001; Yu and Cheng, 2002)

�min

�max
�

�2

d� �1 � �

1 � �i
(41)

where �i is the porosity inside the clusters, d� is the ratio of
average cluster size to the minimum particle size, and d� � 24
(Yu and Cheng, 2002). If we set �i � 0, the saturated
bidispersed porous media become the saturated monodispersed
porous media (such as packed beds), and Eq. 41 is reduced to

�min

�max
�

�2

d� �1 � � (42)

Substituting Eq. 42 into Eq. 9 yields Df for monodispersed
porous media, and inserting Eq. 42 into Eqs. 37 and 38 yields
the phase fractal dimensions Df,w and Df,g for unsaturated
monodispersed porous media. It should be noted that the mono-
dispersed porous media refer to the materials that consist of
particles and pores with different sizes, but these particles do
not agglomerate to form clusters. On the other hand, for bidis-
persed porous media, these particles agglomerate to form clus-
ters with different sizes. The pores in the monodispersed po-
rous media are nonuniform and still follow the fractal scaling
law.

The algorithm for determination of the phase fractal dimen-
sions for monodispersed porous media is summarized as fol-
lows:

(1) Select a porosity, �;
(2) Find �min/�max from Eq. 42;
(3) Select a saturation, Sw, find Df,w and Df,g (let d � 2)

from Eqs. 37 and 38.
Procedure 3 is repeated to find the phase fractal dimensions,

Df,w and Df,g, for a given porosity.
Figure 8 gives the phase fractal dimensions, Df,w and Df,g,

vs. the saturation, Sw, at different porosities. It is seen from
Figure 8 that the phase fractal dimension Df,w increases mo-
notonously with saturation, and as saturation tends to 1, the
fractal dimension Df,w reaches its maximum possible value of
about 1.80 at porosity 0.54, approximately the same value as
that (1.81) for the bidispersed medium (Yu and Cheng, 2002)
at porosity 0.54. At present, the explanation for this is that for
the monodispersed porous media, Eqs. 37 and 42 are applied to
calculate the phase fractal dimension, while for the bidispersed
porous media, Eqs. 9 and 41 were used to find the pore area
fractal dimension. A similar phenomenon can be observed for
the nonwetting fluid. The phase fractal dimension, Df,g,
reaches its maximum possible value, 1.80, as saturation is zero
at porosity 0.54. This means that as saturation tends to zero, the
medium is fully filled with a nonwetting fluid (or single-phase
fluid), so it is expected that the fractal dimension is exactly the

same as that for the saturated porous medium. Figure 8 also
shows that the phase fractal dimensions depend on porosity.
The higher the porosity, the higher the fractal dimension. One
interpretation for this might be that the higher porosity implies
larger pore area, and the larger pore area leads to the higher
fractal dimension. In the limiting case, as porosity tends to 1, a
unit cell of the medium becomes a smooth plane, whose fractal
dimension is 2. Therefore, the present results are reasonable.
An important phenomenon can be also found from Figure 8.
That is when saturation Sw � 0.1, the phase fractal dimension
Df,w � 1. This reveals that when saturation Sw � 0.1, the
wetting phase distribution in porous media is nonfractal (in two
dimensions), according to fractal theory. Similarly, when sat-
uration Sw � 0.9, Df,g � 1. This means that the nonwetting
phase distribution is also nonfractal (in two dimensions) when
Sw � 0.9. This suggests that only when Sw � 0.1 and Sw �
0.9, the wetting and nonwetting phases are fractal objects,
respectively. On the other hand, according to an article by
Kaviany (1995), at very low saturations the wetting phase
becomes disconnected (or immobile). At very high saturations,
the nonwetting phase becomes disconnected. This means that
at low saturation for the wetting phase and at high saturation
for the nonwetting phase, the pore fluid is embedded in one
dimension and the fractal dimension is less than one, as the
fluid is disconnected. Usually, the experimentally relative per-
meability data (De Wiest, 1969; Bear, 1972; Kaviany, 1995)
were also reported in the range of about Sw � 0.1 for the
wetting phase. Thus, the present fractal analysis of permeabil-
ity is restricted in the ranges of Sw � 0.1 for the wetting phase
and Sw � 0.9 for the nonwetting phase by the requirements
from both fractal theory and experimental observations.

Fractal relative permeabilities

According to the preceding analysis, the present fractal rel-
ative permeabilities are given in the ranges of Sw � 0.1 for the
wetting phase and Sw � 0.9 for the nonwetting phase.

The algorithm for determining the relative permeabilities for
monodispersed porous media is summarized as follows:

(1) Select a porosity, �;
(2) Find Df from Eq. 9 with �min/�max from Eq. 42;
(3) Select a saturation, Sw, find Df,w and Df,g from Eqs. 37

and 38;

Figure 8. Phase fractal dimensions vs. saturation.
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(4) Find the relative permeabilities from Eqs. 39 and 40.
Procedures 3 and 4 are repeated to find the relative perme-

abilities for a given porosity. In the preceding calculations, we
have assumed the tortuous fractal dimension DT � DT,w �
DT,g [� 1.10 from the box-counting method (Yu and Cheng,
2002)]. We have found that this computation of relative per-
meabilities takes less than one second in a microcomputer, and
no grid generation and no boundary conditions are needed.
While applying any numerical method such as the finite dif-
ference method, finite-element method, lattice-Boltzmann
method, and Monte Carlo simulation, grid generation and/or
boundary conditions are needed, and thus much more computer
time is often required. Therefore, the advantage of the present
fractal analysis of permeabilities for porous media over numer-
ical methods is evident.

Figure 9 presents the relative permeabilities, krw and krg, vs.
saturation at different porosities/pore-area fractal dimensions
and at given tortuosity fractal dimension DT � 1.10, calcu-
lated from Eqs. 39 and 40, respectively. From Figure 9 it can
be found that krw � krg � 1, which agrees with the general
observations, and the shapes of the relative permeability curves
are also in agreement with reports in the literature (De Wiest,

1969; Bear, 1972; Kaviany, 1995). Figure 9 indicates that,
although the phase fractal dimensions (Df,w and Df,g) depend
on porosity (see Figure 8), the relative permeabilities predicted
by Eqs. 39 and 40 are independent of the porosity/pore-area
fractal dimension, Df (through Eq. 9), in the porosity range of
0.20–0.80, the usual porosity range, and they depend only on
saturation, although the phase permeabilities are dependent
upon phase fractal dimensions Df,w and Df,g (see Eqs. 35 and
36). This is consistent with the available conclusions: “the
relative permeability depends only on the saturation” and
“available experimental evidence indicates that this formal
extension and concept of relative permeability that depends
only on saturation is a good approximation for all practical
purpose” (Bear, 1972). The present fractal relative permeability
results are also consistent with the existing correlations (Kavi-
any, 1995), which are expressed as a function of saturation
only, with one or more empirical constants.

Figure 10 compares the predictions from the present fractal
permeability model for monodispersed porous media (corre-
sponding to packed beds) to the experimental data (Charpentier
and Favier, 1975; Specchia and Baldi, 1977; Saez and Carbon-
nel, 1985; Levec et al., 1986) for packed beds. See Table 1 for
experimental descriptions. It is found that excellent agreement
between the predictions from the fractal relative permeability
model and the experimental data is obtained at Df � 1.80 (that
is, � � 0.54; note that Eq. 9 relates porosity to pore-area fractal
dimension) and DT � 1.10. This verifies the validity of the
present fractal analysis of permeabilities for these porous me-
dia. However, it should be noted that we choose Df � 1.80
(that is, � � 0.54) as a reference for comparison because
Figure 9 has shown that the relative permeability is indepen-

Figure 9. Relative permeabilities predicted by the
present fractal model at DT � 1.10: (a) the
wetting phase, and (b) the nonwetting phase.

Figure 10. Comparison of the relative permeabilities be-
tween the present fractal model predictions
and experimental data (see Table 1 for exper-
imental descriptions).

Table 1. Experimental Descriptions

Exp. References Systems Packing

1 Levec et al. (1986) Air–Water Spheres
2 Charpentier and Favier (1975) Air–Water Spheres
3 Favier (1975) Air–Cyclohexane Cylinders
4 Specchia and Baldi (1977) Air–Water Cylinders
5 Saez and Carbonnell (1985) Air–Water Raschig
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dent of porosity/fractal dimension Df in the usual porosity
range of 0.20–0.80. Figure 10 further indicates that when
fractal dimension Df is less than 1.97 (i.e., porosity � � 0.90
calculated by Eq. 9), the relative permeability is independent of
porosity/fractal dimension Df at a given DT � 1.10. This is
consistent with the available conclusion, because the available
conclusion states that relative permeability depends only on
saturation (Bear, 1972). However, at higher porosity, Df �
1.97 (that is, � � 0.90), it is found that the relative perme-
ability is a weak function of porosity at a given tortuosity DT �
1.10. In the limit of Df � 2 (that is, � � 1) and DT � 1.10,
we have the maximum possible relative permeability, 9%
higher than that in the usual porosity range. An explanation for
this is that when porosity increases up to 1 (i.e., Df � 2), a unit
cell consists of only one capillary tube with no any imperme-
able substance inside the unit cell (Yu, 2001; Yu et al., 2002;
Yu and Cheng, 2002). So, in this situation, the flow resistance
reaches the minimum value and the relative permeability ar-
rives at the maximum value. The present result reveals that at
higher porosity, � � 0.90, the relative permeability weakly
depends on porosity/fractal dimension Df, and increases with
porosity/fractal dimension Df. This dependence of relative
permeability on porosity/fractal dimension Df at higher poros-
ity, however, was not reported by experiments and numerical
simulations (such as the lattice Boltzmann method), and this
article reports such dependence for the first time. Figure 10 also
compares the present model predictions to the experimental
data in the limit cases of tortuosity fractal dimensions DT � 2
and DT � 3. It is known that the streamlines/capillary tubes/
flow fields in porous media exhibit multidimensionality and are
similar to turbulence and are often approximately described by
turbulence theory (Bear, 1972; Kaviany, 1995). While turbu-
lence can be characterized by fractal theory (Falconer, 1985;
Feder, 1988; Turcotte, 1988; Screenivasan, 1991). Thus, the
tortuosity fractal dimension, DT, defined by Eq. 10 may be in
the range of 1–2 in a two-dimensional section or in the range
of 2–3 in a three-dimensional space. In the limit case of DT �
2, the streamlines/capillary tubes are so tortuous that they fill a
plane, while in the limit case of DT � 3, the streamlines/
capillary tubes are so tortuous that they fill a three-dimensional
space. These limit cases lead to the highest resistance for flow,
and thus to the lowest permeabilities. The results show (see
Figure 10), that the relative permeabilities are lower (19% and
37%) than the experimental data and the model predictions at
Df � 1.80 and DT � 1.10 when the tortuosity fractal dimen-
sion DT increases up to 2 and 3, respectively. This shows that
the higher the tortuosity fractal dimension, DT, the lower the
relative permeability. This can be interpreted as the higher
tortuosity fractal dimension implies the higher tortuosity of
streamlines/capillary tubes, causing the higher flow resistance,
and thus resulting in the lower relative permeability. This trend
also can be seen from Eq. 39, because relative permeability is
proportional to Sw

(3�DT)/ 2, and note that saturation 0 � Sw �
1. The present work thus also quantitatively explains why
3-dimensional permeability is much lower than 2-dimensional
permeability (Adler and Thovert, 1993).

It is seen in Figures 9 and 10 that although the present
relative permeability model is expressed as a function of the
tortuosity fractal dimension, DT, pore-area fractal dimension,
Df, phase fractal dimensions, Df,w and Df,g, and saturation, Sw,
it turns out that the model predictions depend only on satura-

tion Sw and on tortuosity fractal dimension DT in the porosity
range of � � 0.90 (i.e., Df � 1.97). At higher porosity � �
0.90 (that is, Df � 1.97), the relative permeability increases
with porosity/pore area fractal dimension Df. It is also known
that the existing relative permeability correlations contain one
or more empirical constants with no physical meaning, and the
mechanisms behind these constants were ignored. The present
work demonstrates that the tortuosity fractal dimension DT of
streamlines/capillaries and pore-area fractal dimension Df for
characterization of the fractal natures of porous media may be
two of the important mechanisms affecting the relative perme-
ability in porous media. Therefore, this work is an addition to
the conclusion by Bear (1972) and existing correlations (Ka-
viany, 1995), which indicate that relative permeability depends
only on saturation.

The relative permeability, of course, may be affected by
many other factors, such as viscosity ratio, surface tension,
wettability, density ratio, capillary pressure, hysteresis, and
contact angle. This article presents a simple model. A more
sophisticated model, which is expected to include one or more
other factors, might be studied in the future.

Concluding Remarks

A complete fractal analysis of permeabilities for porous
media, both saturated and unsaturated, is presented in this
article. The phase fractal permeability models, given by Eqs.
35 and 36, are in terms of the tortuosity fractal dimension DT,
pore-area fractal dimension, Df, phase fractal dimensions, Df,w

and Df,g, saturation, Sw, and the structural parameters, A, �max,
L0. The fractal relative permeability models given by Eqs. 39
and 40 are expressed as a function of tortuosity fractal dimen-
sion DT, pore-area fractal dimension Df, phase fractal dimen-
sions Df,w and Df,g, and saturation. There is no empirical
constant in the present relative permeability models. The frac-
tal permeability model Eq. 14 can be considered as a special
case of the unsaturated porous medium by setting Sw � 1 in
Eqs. 35 and 37 or by setting Sw � 0 in Eqs. 36 and 38. The
results (at a given DT) from the present relative permeability
models are found to be independent of porosity/pore-area frac-
tal dimension, Df, and to depend only on saturation in the
porosity range of � � 0.90 (that is, Df � 1.97), which is
consistent with the available conclusion and existing experi-
mental data. At a higher porosity of � � 0.90 (that is, Df �
1.97), the relative permeability is a weak function of the
porosity/pore fractal dimension, Df, and increases with poros-
ity/pore fractal dimension Df. The present results also show
that the higher the tortuosity fractal dimension, DT, the lower
the permeability. The present work reveals that fractal dimen-
sion Df and tortuosity fractal dimension DT may be two of the
important mechanisms affecting the relative permeability in
porous media. Therefore, this work is a supplement to the
available conclusion by Bear (1972) and existing correlations
(Kaviany, 1995), which indicate that relative permeability de-
pends only on saturation. If the tortuosity fractal dimension
DT � 1.10 is used for real monodispersed porous media
(similar to packed beds), the predictions of the relative perme-
abilities based on the proposed fractal model in the porosity
range of � � 0.90 (that is, Df � 1.97) are found to be in
excellent agreement with experimental data. This verifies the
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validity of the present fractal analysis of the permeability for
porous media.

However, it should be noted that while the fractal model is
able to capture the data shown in Figure 10, it might not be the
only model. It should also be noted that not all porous media
are fractals. The present model is only applicable to the porous
media whose pore-size distributions follow fractal scaling
laws. Therefore, one must ascertain experimentally that the
porous media used in the experiments (reported in Figure 10)
are indeed fractal in nature to conclusively demonstrate that the
assumption of fractal geometry is indeed correct. Since many
other factors, such as viscosity ratio, surface tension, wettabil-
ity, density ratio, capillary pressure, hysteresis, and contact
angle, may affect the relative permeability, a more complicated
model than the present one may need to be developed. This
article presents a preliminary work, and further study in this
area is in progress.
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