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ABSTRACT

The volume averaging theory of porous media has been applied to obtain
a general set of macroscopic governing equations for countercurrent bio-
heat transfer between terminal arteries and veins in the circulatory system.
Capillaries providing a continuous connection between the countercurrent
terminal arteries and veins are modeled, introducing the perfusion bleed-
off rate. Three distinctive energy equations are derived for the arterial
blood phase, venous blood phase, and tissue phase. It has been found that
the resulting model, under appropriate conditions, naturally reduces to
those introduced by Chato, Bejan, Weinbaum and Jiji, and others for coun-
tercurrent heat transfer for the case of closely aligned pairs of vessels.
A useful expression for the longitudinal effective thermal conductivity for
the tissue has been derived without dropping the perfusion source terms.
The expression turns out to be quite similar to Bejan’s and Weinbaum
and Jiji’s expressions. Furthermore, the effect of spatial distribution of
perfusion bleed-off rate on total countercurrent heat transfer has been
investigated in depth exploiting the present bioheat transfer model.
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NOMENCLATURE

A surface area (m2) Greek Symbols
Aint interface between the fluid and solid (m2) α thermal diffusivity (m2/s)

af specific surface area (1/m) ε porosity (-)

cp specific heat at constant pressure (J/kgK) ν kinematic viscosity (m2/s)

hf interfacial heat transfer coefficient σk,σε density (kg/m2)

(W/m2K) σk,σε perfusion bleed-off rate (1/s)

k thermal conductivity (W/mK) Subscripts and Superscripts
Kij permeability tensor (m2) a artery

ui, u unit vector pointing outward from dis dispersion

the fluid side to solid side f fluid

p pressure (Pa) s solid

ui, u metabolic reaction rate (W/m3) v vein

T temperature (K) Special Symbols
ui, u velocity vector (m/s) ϕ̃ deviation from intrinsic average

V representative elementary volume (m3) 〈φ〉 volume average

x, y Cartesian coordinates (m) 〈φ〉f,s,a,v intrinsic average

1. INTRODUCTION

Bazett and colleagues (1948a,b) conducted a series of

experimental studies on countercurrent heat exchange

in the circulatory system. They found that the axial

temperature gradient in the limb artery of humans,

under conditions of very low ambient temperature, is

an order of magnitude higher than under normal ambi-

ent conditions. From these experimental observations,

they proposed the concept of venous shunting to the

periphery, namely, that the countercurrent heat trans-

fer takes place in the deep vasculature at the same

time the blood is directed to the cutaneous circulation

in close proximity to the surroundings. Their experi-

mental finding brought attention to the important role

of countercurrent heat exchange in bioheat transfer.

Especially when the anatomical configuration of the

main supply artery and vein in the limbs is treated, the

effect of countercurrent heat transfer between closely

spaced arteries and veins in the tissue must be taken

into full consideration.

Following the experimental studies conducted by

Bazett and colleagues (1948a,b), Scholander and Krog

(1957) and Mitchell and Myers (1968) investigated

such an effect and successfully demonstrated that the

countercurrent heat exchange reduces heat loss from

the extremity to the surroundings, which could be

quite significant due to a large surface-to-volume ra-

tio. These models, however, were not able to take

account of either metabolic reaction or perfusion

bleed-off from the artery to vein. Keller and Seiler

(1971) established a one-dimensional bioheat transfer

model to include the countercurrent heat transfer for

the subcutaneous tissue region with arteries, veins,

and capillaries. Weinbaum and Jiji (1979, 1985) pro-

posed a model, which is based on some anatomical

understanding, considering the countercurrent arteri-

ovenous vessels. Roetzel and Xuan (1998) pointed

out that the model may be useful in describing a

temperature field in a single organ but would not

be convenient to apply to the whole thermoregulation

system. The foregoing survey prompts us to establish
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a multidimensional model that can be applied to the

regions of extremity, where the countercurrent heat

transfer between closely spaced arteries and veins in

the blood circulatory system occurs. Excellent reviews

on these bioheat transfer equations may be found in

Chato (1980), Charny (1992), and Khaled and Vafai

(2003).

Xuan and Roetzel (1997), Khaled and Vafai (2003),

and Khanafer and Vafai (2006) stress the advantages

in appealing to the theory of porous media. In this

study, we appeal to a general bioheat transfer model

based on the volume averaging theory of porous me-

dia, recently introduced by Nakayama and Kuwahara

(2008). We shall extend this procedure for the case of

countercurrent bioheat transfer in a blood circulatory

system. The set of macroscopic governing equations

consists of continuity and momentum equations for

both arterial and venous blood phases and three indi-

vidual energy equations for the two blood phases and

the tissue phase. It will be shown that most shortcom-

ings in existing models are overcome in the present

model. Capillaries providing a continuous connec-

tion between the countercurrent terminal arteries and

veins are modeled introducing the perfusion bleed-off

rate, originally introduced in the pioneering article by

Pennes (1948). It has been found that the resulting

model under certain conditions reduces to existing

models for countercurrent heat transfer such as Chato

(1980), Bejan (1979), Keller and Seiler (1971), Roet-

zel and Xuan (1998), and Weinbaum and Jiji (1985)

for the case of closely aligned pairs of artery and

vein. A general expression has been presented for the

longitudinal effective thermal conductivity in the en-

ergy equation for the tissue. To examine the present

model, we shall apply it to the countercurrent blood

vessel configuration examined by Chato. While Chato

assumed the constancy of the perfusion bleed-off rate,

we shall allow the spatial distribution of the perfusion

bleed-off rate and investigate its effect on the total

countercurrent heat transfer.

2. VOLUME AVERAGING PROCEDURE

We shall treat the whole anatomical structure as a

fluid-saturated porous medium, through which the

blood infiltrates, and try to apply the principle of

heat and fluid flow in a fluid-saturated porous medium

to derive a set of the volume-averaged governing

equations for the bioheat transfer and blood flow. A

schematic view of the tissue layer close to the skin

surface is shown in Fig. 1, in which the arteries

and veins are paired such that the countercurrent heat

transfer takes place. Thus we assign individual de-

pendent variables, such as temperature, to the arterial

blood, venous blood, and tissue, which leads us to

propose a three-energy equation model.

In an anatomical view, three compartments are

identified in the biological tissues, namely, blood ves-

sels, cells, and interstitium, as illustrated in Fig. 2.

Arterial vessel

Venous vessel

Deep tissue layer

Cutaneous layer

Figure 1. Schematic view of countercurrent heat ex-
change near the skin surface

Blood vessels Cells

Extravascular regionVascular region

Figure 2. Schematic view of biological tissue
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The interstitial space can be further divided into the

extracellular matrix and the interstitial fluid. However,

for sake of simplicity, we divide the biological tissue

into two distinctive regions, namely, the vascular re-

gion and the extravascular region (i.e., cells and the

interstitium), and treat the whole anatomical structure

as a fluid-saturated porous medium, through which the

blood infiltrates. The extravascular region is regarded

as a solid matrix (although the extravascular fluid is

present) and will be simply referred to as the “tissue”

region to differentiate it from the “blood” region.

In what follows, we shall introduce the principle of

heat and fluid flow in a fluid-saturated porous medium

to derive a set of the volume-averaged governing

equations for the bioheat transfer and blood flow. A

general bioheat transfer model based on the volume

averaging theory of porous media, recently introduced

by Nakayama and Kuwahara (2008), may readily

be extended for the case of countercurrent bioheat

transfer in a blood circulatory system. The blood

perfusion heat source term will be identified as an

extra surface integral term resulting from changing the

sequence of integration and derivation, as we obtain

the macroscopic energy equation by integrating the

microscopic convection term within a local control

volume.

Let us consider a local control volumeV in a fluid-

saturated porous medium, as shown in Fig. 3, whose

V

Vc

Figure 3. Control volume in a porous medium

length scaleV 1/3 is much smaller than the macro-

scopic characteristic lengthV 1/3
c , but, at the same

time, much greater than the microscopic characteris-

tic length (see, e.g., Cheng, 1978; Nakayama, 1995).

Under this condition, the volume average of a certain

variableϕ is defined as

〈ϕ〉 ≡ 1
V

∫

Vf

ϕdV (1)

Another average, namely, intrinsic average, is given

by

〈ϕ〉f ≡ 1
Vf

∫

Vf

ϕdV (2)

where Vf is the volume space that the fluid (blood)

occupies. Obviously, two averages are related as

〈ϕ〉 = ε 〈ϕ〉f , whereε ≡ Vf/V is the local porosity,

namely, the volume fraction of the vascular space,

which is generally less than 0.1.

Following Cheng (1978), Vafai and Tien (1981),

Nakayama (1995), Quintard and Whitaker (1993), and

many others, we decompose a variable into its intrin-

sic average and the spatial deviation from it:

ϕ = 〈ϕ〉f + ϕ̃ (3)

All dependent variables in the microscopic governing

equations for the arterial blood, venous blood, and

tissue phases are decomposed in this manner, and

then these governing equations are integrated over

the local control volume. After some manipulations,

following Nakayama and Kuwahara (2008), we obtain

the volume-averaged set of the governing equations,

which can be written assigning the subscriptsa, v,

ands to arterial blood vessels (arteries and arterioles),

venous blood vessels (veins and venules), and tissue,

as follows:

For the Arterial Blood Phase:

∂εa 〈uj〉a
∂xj

+ ω′
a = 0 (4)
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−1
ρ

∂ 〈p〉a
∂xi

− ν

Kaij

εa 〈uj〉a −ω′
auiint = 0 (5)

εaρfcpf

∂ 〈T 〉a
∂t

+ ρfcpf

∂

∂xj
εa 〈uj〉a 〈T 〉a

=
∂

∂xj

(
εaka

∂ 〈T 〉a
∂xj

+ εakdisajk

∂ 〈T 〉a
∂xk

)

− aaha (〈T 〉a − 〈T 〉s)− ρfcpf
ω′

a 〈T 〉a (6)

For the Venous Blood Phase:

∂εv 〈uj〉v
∂xj

+ ω′
v = 0 (7)

−1
ρ

∂ 〈p〉v
∂xi

− ν

Kvij

εv 〈uj〉v −ω′
vuiint = 0 (8)

εvρfcpf

∂ 〈T 〉v
∂t

+ ρfcpf

∂

∂xj
εv 〈uj〉v 〈T 〉v

=
∂

∂xj

(
εvkv

∂ 〈T 〉v
∂xj

+ εvkdisvjk

∂ 〈T 〉v
∂xk

)

− avhv (〈T 〉v − 〈T 〉s)− ρfcpf
ω′

v 〈T 〉v (9)

For the Solid Tissue Phase:

(1− ε) ρscs
∂ 〈T 〉s

∂t
=

∂

∂xj

(
(1− ε) ks

∂ 〈T 〉s
∂xj

)

+ aaha (〈T 〉a − 〈T 〉s) + ρfcpf
ω′

a 〈T 〉a + avhv

×(〈T 〉v−〈T 〉s)+ρfcpf
ω′

v 〈T 〉v+(1−ε) Sm (10)

whereεa andεv are the volume fractions of the arte-

rial blood and that of the venous blood, respectively,

such thatε = εa + εv. The terms associated with the

surface integral are modeled as

1
Vf

∫

Aint

(
− p

ρf
+ νf

(
∂ui

∂xj
+

∂uj

∂xi

))
njdA

= − νf

Kij
ε 〈uj〉f (11)

which is simply Darcy’s law, and

∫

Aint

ρf uj nj d A/V = ρfω′ (12)

is the mass flow rate per a unit volume through

the interfaceAint, modeled in terms of the perfusion

bleed-off rateω′ (1/s). The perfusion bleed-off rate

ω′ describes the volume rate of the fluid per a unit

volume, bleeding off to the solid matrix through the

interfacial vascular wall. Thus the momentum bleed-

off rate is modeled as
∫

Aint

ρf ui uj nj dA/V = ρfω′ uiint (13a)

whereuiint is the velocity vector averaged over the in-

terface. Likewise, the enthalpy bleed-off rate is mod-

eled as
∫

Aint

ρf cpf
uj T nj d A/V = ρf cpf

ω′ 〈T 〉f (13b)

For the interfacial heat transfer, Newton’s cooling law

is adopted as

1
V

∫

Aint

kf
∂T

∂xj
njdA = afhf

(
〈T 〉s − 〈T 〉f

)
(14)

where af and hf are the specific surface area and

interfacial heat transfer coefficient, respectively. Fur-

thermore,kdisjk
is the thermal dispersion conductivity

tensor, as introduced by Nakayama et al. (2006).

For the microcirculation of peripheral tissue in

which capillaries provide a continuous connection

between the terminal artery and vein (i.e., arterial-

venous anastomoses), as shown in Fig. 1, we may

readily setω′
a = −ω′

v such that the present energy

Eq. (10) for the solid tissue phase reduces to

(1− ε) ρscs
∂ 〈T 〉s

∂t
=

∂

∂xj

(
(1− ε) ks

∂ 〈T 〉s
∂xj

)

+ aaha (〈T 〉a − 〈T 〉s) + avhv (〈T 〉v − 〈T 〉s)
+ρfcpf

ω′
a (〈T 〉a − 〈T 〉v)+(1−ε)Sm (15)
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3. COMPARISON OF PRESENT AND
EXISTING BIOHEAT TRANSFER MODELS

Most existing bioheat transfer models for counter-

current bioheat transfer already reside in the present

model based on the theory of porous media. Let us

revisit some of the existing models and try to generate

them from the present general model.

3.1. Keller and Seiler Model

Keller and Seiler (1971) noted that the axial tem-

perature gradient in the limb is much higher than

the transverse one and considered an energy bal-

ance within a control volume for the idealized one-

dimensional steady case, as illustrated in Fig. 4, for

which they proposed

(1− ε) ks
d2 〈T 〉s

dx2
+ aaha (〈T 〉a − 〈T 〉s)

+avhv (〈T 〉v−〈T 〉s)+ρfcpf
ω′ (〈T 〉a−〈T 〉s)

+ (1− ε)Sm = 0 (16)

which is almost identical to what we would get for

the one-dimensional case from our multidimensional

expression (15), except that the temperature differ-

ence in the perfusion term somewhat differs from

ours. Keller and Seiler obtained solutions assuming

that the arterial blood enters the peripheral region at

the isothermal core temperature and that the venous

Arteries

Veins

Capillaries

Tissue space

Figure 4. One-dimensional model for countercurrent heat
exchange

blood is completely equilibrated with the tissue at the

cutaneous layer.

3.2. Chato Model

Chato’s (1980) countercurrent heat transfer model dif-

fers from Keller and Seiler (1971) in its neglect of

heat transfer between the blood and tissue. In this

way, he was able to concentrate on the two tem-

peratures, instead of three, as in Keller and Seiler.

Chato assumes the flow rate decreases linearly, which

corresponds with the case of a constant perfusion

bleed-off rate. His one-dimensional model can easily

be generated from our general expressions (6) and (9)

along with (4) and (7), dropping the transient and

conduction terms, as

ρfcpf

d

dx
εa 〈u〉a 〈T 〉a = −afhf (〈T 〉a − 〈T 〉v)

− ρfcpf
ω′

a 〈T 〉a (17)

ρfcpf

d

dx
εv 〈u〉v 〈T 〉v = −afhf (〈T 〉v − 〈T 〉a)

+ ρfcpf
ω′

a 〈T 〉a (18)

where the interfacial heat transfer coefficients are

assumed to be the same. The continuity Eqs. (4) and

(7) readily provide

εa 〈u〉a = u0 −ω′
ax (19)

εv 〈u〉v = −u0 + ω′
ax (20)

Note thatu0 is the apparent velocity atx = 0 and that

the right-hand side terms in the two Eqs. (17) and (18)

cancel out each other, as they should for this “perfect”

heat exchange system. Chato obtained arterial and

venous temperature profiles along the length of the

vessels and demonstrated that the effect of perfusion

bleed-off is to increase the heat transfer between the

vessels as compared with the case of constant mass

flow rate (i.e.,ω′
a = 0).
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3.3. Roetzel and Xuan Model

Roetzel and Xuan (1998) used the theory of porous

media to simulate a transient response of the limb to

external stimulus, in which the effect of the counter-

current heat exchange on the temperature response is

expected to be significant. Their energy equation for

the tissue in our notation runs as

(1− ε) ρscs
∂ 〈T 〉s

∂t
=

∂

∂xj

(
(1− ε) ks

∂ 〈T 〉s
∂xj

)

+ aaha (〈T 〉a − 〈T 〉s) + avhv (〈T 〉v − 〈T 〉s)
+ (1− ε)Sm (21)

Comparison of the foregoing equation against our ex-

pression (15) for the tissue reveals that the perfusion

term ρfcpf
ω′

a (〈T 〉a − 〈T 〉v) is missing. Obviously,

they did not retain the term describing the transcap-

illary fluid exchange via arterial-venous anastomoses,

namely,
∫

Aint

ρf cpf
uj T nj dA/V = ρfcpf

ω′ 〈T 〉f . If

they did, they would have obtained our expression

(15), which may be rearranged in their form as

(1− ε) ρscs
∂ 〈T 〉s

∂t
=

∂

∂xj

(
(1− ε) ks

∂ 〈T 〉s
∂xj

)

+
(
aaha + ρfcpf

ω′
a

)
(〈T 〉a − 〈T 〉s) +

(
avhv

− ρfcpf
ω′

a

)
(〈T 〉v − 〈T 〉s) + (1− ε)Sm (22)

In their model, the convection-perfusion parameters,

namely,
(
afhf ± ρfcpf

ω′), are replaced by the in-

terfacial convective heat transfer coefficients,afhf .

This difference should not be overlooked since the

perfusion heat sources could be quite significant for

the bioheat transfer in the extremities, as Chato (1980)

demonstrated using his model.

3.4. Weinbaum-Jiji Model and Bejan Model

Weinbaum and Jiji (1979) considered bioheat trans-

fer between a paired countercurrent terminal artery

and vein. They took account of the vascular struc-

ture in which vessel number density, velocity, and

diameter vary significantly from the deep tissue layer

toward the skin layer. Later, Weinbaum and Jiji (1985)

proposed a simplified model in which an effective

thermal conductivity tensor is introduced as a function

of the local blood velocity. They claimed that the per-

fusion heat source vanishes within the capillary bed

and derived a single equation to describe the steady

state tissue temperature variations, which, when the

vessels are in parallel to the temperature gradient,

reduces to

d

dx

((
(1−ε) ks+

πεa

2σ

(
ρfcpf

〈u〉a R
)2

(1−ε) ks

)
d 〈T 〉s

dx

)

+ (1− ε)Sm = 0 (23)

where σ is a geometrical factor of the vessel struc-

ture, whereasR is the local radius of the vessel. It

is seen that the longitudinal effective thermal con-

ductivity due to countercurrent flow is proportional

to the square of blood mass flow rate. It is also in-

teresting to note that the concept of the longitudinal

effective thermal conductivity in countercurrent heat

transfer was already explicit in Bejan (1979; A. Bejan,

pers. comm., 2007), in which he presented a novel

method for thermal insulation system optimization.

Bejan (1979) seems to be the first to point out the

relationship associated with the square of the mass

flow rate and the longitudinal effective thermal con-

ductivity by convection. His expression is a simple

one:

Q = − (ṁfcpf )2

UP

d 〈T 〉s
dx

(24)

where Q, ṁf , U , and P are the heat flow from

the warm end to the cold end, the mass flow rate

of the hot (or cold) fluid, the overall heat trans-

fer coefficient, and the wetted perimeter, respectively.

The group(ṁfcpf )2 / (UP ) plays the same role as

Akeff in the one-dimensional insulation system. On

noting thatṁf = Aρfεa 〈u〉a andP = Aaf , Bejan’s

Eq. (24) may be translated in the present bioheat

transfer problem as
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d

dx

((
(1− ε) ks +

(
ρfcpf

εa 〈u〉a
)2

afU

)
d 〈T 〉s

dx

)

+ (1− ε)Sm = 0 (25)

In these countercurrent heat transfer models, namely,

Bejan’s and Weinbaum and Jiji’s, the perfusion heat

sources are ignored. Thus, in what follows, we shall

attempt to reduce the present set of governing equa-

tions to a single equation for the tissue temperature

variations, without neglecting these perfusion heat

source terms.

When the blood flow is strong enough to neglect

the macroscopic diffusion, the energy Eqs. (6) and

(9) for arterial and venous blood flows for the one-

dimensional steady state reduce to

ρfcpf

d

dx
εa 〈u〉a 〈T 〉a = −afhf (〈T 〉a − 〈T 〉s)

− ρfcpf
ω′

a 〈T 〉a (26)

ρfcpf

d

dx
εv 〈u〉v 〈T 〉v = −afhf (〈T 〉v − 〈T 〉s)

+ ρfcpf
ω′

a 〈T 〉v (27)

where the interfacial heat transfer coefficients are

assumed to be the same as in the case of Chato.

However, the foregoing equations are different from

Chato’s Eqs. (17) and (18), since we do take account

of the heat transfer between the bloods and tissue. On

noting the continuity relationshipεa 〈u〉a = −εv 〈u〉v,

as given by the continuity Eqs. (4) and (7), with

ω′
a = −ω′

v, we subtract Eq. (27) from (26) to obtain

ρfcpf

d

dx
εa 〈u〉a (〈T 〉a + 〈T 〉v) = −afhf

× (〈T 〉a−〈T 〉v)−ρfcpf
ω′

a (〈T 〉a+〈T 〉v) (28a)

or

ρfcpf
εa 〈u〉a d

dx
(〈T 〉a + 〈T 〉v) = −afhf

× (〈T 〉a − 〈T 〉v) (28b)

as we note the continuity relationship, namely,

d (εa 〈u〉a) /dx = −ω′
a. Weinbaum and Jiji (1985)

proposed that the mean tissue temperature around an

artery-vein pair can be approximated as

〈T 〉s =
〈T 〉a + 〈T 〉v

2
(29)

Following their approximation, we obtain

〈T 〉a − 〈T 〉v = −2
ρfcpf

εa 〈u〉a
afhf

d 〈T 〉s
dx

(30)

from Eq. (28b). Using Eqs. (26) and (27), we may

replace both interfacial and perfusion heat source

terms in the energy Eq. (15) for the tissue by the

blood convection terms as

d

dx

(
(1− ε) ks

d 〈T 〉s
dx

)
+ aaha (〈T 〉a − 〈T 〉s)

+ avhv (〈T 〉v−〈T 〉s) + ρfcpf
ω′

a (〈T 〉a−〈T 〉v)

+(1−ε)Sm =
d

dx

(
(1−ε) ks

d 〈T 〉s
dx

)
−ρfcpf

d

dx

×(εa〈u〉a〈T 〉a+εv〈u〉v〈T 〉v)+(1−ε)Sm =0 (31)

As we note the continuity relationshipεa 〈u〉a =
−εv 〈u〉v and use Eq. (30) for the last expression in

Eq. (31), we finally have

d

dx

((
(1− ε) ks + 2

(
ρfcpf

εa 〈u〉a
)2

afhf

)
d 〈T 〉s

dx

)

+ (1− ε)Sm = 0 (32)

which we find almost identical to Bejan’s Eq. (25),

as we note the overall heat transfer coefficient corre-

sponds to

U =
1

1
ha

+
1
hv

=
hf

2
(33)

It is most interesting to find that the foregoing rela-

tionship for the longitudinal effective thermal conduc-

tivity holds for all cases, with or without perfusion

bleed-off sources, as long as the local values are

used to evaluate the effective thermal conductivity by

convection.
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4. EFFECT OF SPATIAL DISTRIBUTION OF
PERFUSION BLEED-OFF RATE ON TOTAL

COUNTERCURRENT HEAT TRANSFER

As an example for illustration, we shall consider

Chato’s (1980) one-dimensional problem of counter-

current heat transfer, as schematically shown in Fig. 4.

Chato assumed the constancy of the perfusion bleed-

off rate ω′
a, namely, a linear decrease in the arterial

flow rate, and that all of the bleed-off fluid that leaves

the artery reenters the vein at the same location. We

shall relax his assumption, allowing the spatial varia-

tion of ω′
a so as to investigate its effect on the total

countercurrent heat transfer. Let us assume that the

perfusion bleed-off rateω′
a follows

ω′
a = (1 + n) ω̄′

a

( x

L

)n

(34)

along the blood vessel of lengthL, whereω̄′
a is the

average perfusion rate such that the total amount of

perfusion is given byω̄′
aL, irrespective of the value

of n. The exponentn may take any value equal to

zero (i.e., Chato’s case) or greater than zero such

that we can compare the results against Chato’s and

elucidate the effect of blood pressure on the bioheat

transfer for fixed total amount of perfusion. As we

substitute the foregoing equation into the continuity

Eqs. (4) and (7), we readily obtain

εa 〈u〉a = u0 − ω̄′
aL

( x

L

)1+n

(35)

εv 〈u〉v = −u0 + ω̄′
aL

( x

L

)1+n

(36)

where u0 is the apparent blood velocity atx= 0.

As illustrated in Fig. 5, the exponentn controls the

distribution of the perfusion rate. For a large exponent

n, the perfusion bleed-off takes place rather suddenly

toward the end of the vessel, indicating poor blood

circulation.

On substituting these velocity distributions into the

momentum Eqs. (5) and (8), we obtain
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Figure 5. Effect of the exponentn on perfusion rate

〈p〉|x=0 − 〈p〉|x=L = (εa 〈p〉a + εv 〈p〉v)|0L

= µ

(
εa

Ka
− εv

Kv

)
u0L

(
1− E

2 + n

)
(37)

where

E =
ω̄′

aL

u0
(38)

is the dimensionless perfusion bleed-off rate, whileµ

is the viscosity. Thus the pressure difference within

the body may never be large sinceεa/Ka
∼= εv/Kv.

Equation (37), however, indicates that the blood pres-

sure difference increases for either small perfusion

bleed-off rate E or large exponentn, which may

result from aging.

Following Chato (1980), we note that the axial

conduction terms in the blood energy equations are

negligibly small as compared with the convection and

perfusion terms. Then, the energy Eqs. (17) and (18),

along with the foregoing velocity distributions, reduce

to

d 〈T 〉a
d (x/L)

=− N

1−E
( x

L

)1+n (〈T 〉a−〈T 〉v) (39)



298 Nakayama, Kuwahara and Liu

d 〈T 〉v
d(x/L)

=
N+(1+n)E

( x

L

)n

1−E
( x

L

)1+n (〈T 〉v−〈T 〉a) (40)

where

N =
afhfL

ρfcpf
u0

(41)

is the number of heat transfer units. The boundary

conditions are given by

x/L = 0 : 〈T 〉a = 〈T 〉a0 (42)

x/L = 1 : 〈T 〉v = 〈T 〉vL (43)

A series of numerical integrations were carried

out for various sets of three important dimensionless

parameters, namely, the dimensionless perfusion rate

E, the number of heat transfer unitsN , and the

exponentn. Thus the temperature profiles along the

vessel axes are obtained for the case ofn = 0 and

presented in Figs. 6a,b for a physiological range

of E and N values. The results appear to be in

perfect agreement with the exact expressions reported

by Chato (1980). The difference between the present

curves forn = 0 and those based on Chato’s solution

is indiscernible in the figure. Naturally, a better blood

circulation (i.e., largerE) results in warming the

venous blood efficiently. The figures show that its

efficiency as a heat exchanging system increases with

N .

The temperature profiles along the vessel axes for

the case ofn = 5 are presented in Figs. 7a,b. It is

interesting to note that the arterial blood temperature

for the case of nonzeron always stays higher than

that for the case ofE = 0 (i.e., without perfusion),

even at the end of the vessel. Following Chato, we

shall evaluate the total heat transfer from the artery to

vein in terms of

qa−v = ρcpfu0 (〈T 〉v0 − 〈T 〉vL) (44)

or its dimensionless form, namely,

qa−v

ρcpfu0 (〈T 〉a0 − 〈T 〉vL)
=
〈T 〉v0 − 〈T 〉vL
〈T 〉a0 − 〈T 〉vL

(45)

The total heat transfer from the artery to vein is

plotted against the exponentn for various sets of

N andE values in Fig. 8. The total heat transfer

decreases with increasingn (i.e., worsening the blood

circulation), while it increases withE (i.e., increasing

the perfusion rate).

5. CONCLUSIONS

The present model accounts for not only the tissue

temperature field, but all velocity and temperature

fields for the arterial blood, venous blood, and tissue
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Figure 6. Arterial and venous blood temperature profiles along the vessel axes for the case ofn = 0
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Figure 8. Effect of the exponentn on the total heat
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in the countercurrent blood circulatory system, and

all these governing equations are coupled with one

another in terms of blood perfusion bleed-off rates

and interfacial heat transfer coefficients. The model

based on the theory of anisotropic porous media pro-

vides a closed set of macroscopic governing equations

for both velocity and temperature fields in intra- and

extravascular phases, for the first time.

Existing models such as Chato (1980), Bejan

(1979), Keller and Seiler (1971), and Weinbaum and

Jiji (1985) were obtained by writing the present model

for the idealized one-dimensional case. A useful ex-

pression for the longitudinal effective thermal conduc-

tivity for the tissue was derived without dropping the

perfusion source terms. The effects of spatial distribu-

tion of perfusion bleed-off rate on total countercurrent

heat transfer were investigated applying the present

bioheat transfer model to Chato’s one-dimensional

problem. The present three-energy equation model in

a multidimensional and anisotropic form is quite gen-

eral and can be applied to the regions where the

countercurrent heat transfer in the blood circulatory

system plays an important role in the peripheral heat

transfer from the extremity to the surroundings.
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