Optimal Structural Design of a Heat Sink With Laminar Single-Phase Flow Using Computational Fluid Dynamics-Based Multi-Objective Genetic Algorithm

This paper proposes a general method combining evolutionary algorithm and decision-making technique to optimize the structure of a minichannel heat sink (MCHS). Two conflicting objectives, the thermal resistance h and the pumping power P, are simultaneously considered to assess the performance of the MCHS. In order to achieve the ultimate optimal design, multi-objective genetic algorithm is employed to obtain the nondominated solutions (Pareto solutions), while technique for order preference by similarity to an ideal solution (TOPSIS) is employed to determine which is the best compromise solution. Meanwhile, both the material cost and volumetric flow rate are fixed where this nonlinear problem is solved by applying the penalty function. The results show that 0 of Pareto solutions varies from 0.03707 K W$^{-1}$ to 0.10742 K W$^{-1}$, while P varies from 0.00307 W to 0.05388 W, respectively. After the TOPSIS selection, it is found that P is significantly reduced without increasing too much h. As a result, 0 and P of the optimal MCHS determined by TOPSIS are 35.82% and 52.55% lower than initial one, respectively. [DOI: 10.1115/1.4037643]
In the present study, parameters of the initial MCHS are \(W_w = W_c = 0.5 \text{ mm}, \ H_c = 2 \text{ mm}, \) and \(H_b = 1 \text{ mm}, \) with \(u_{in} = 1 \text{ m s}^{-1}. \)

Figure 2 illustrates the cross section of the computational domain of the minichannel. A no-slip condition is applied at the interior walls. In order to save the computing time, symmetric boundary conditions are applied in the present work. Moreover, the following assumptions are made in the numerical simulations:

1. The water flow is three-dimensional, laminar, incompressible, and in steady-state.
2. All the thermophysical properties are constant and the heat flux is uniform.
3. The gravitational force is neglected.

Based on the above assumptions, the governing equations including the continuity, momentum, and energy can be expressed as follows.

Continuity equation for the coolant:
\[
\nabla \cdot \mathbf{V} = 0 \tag{1}
\]

Momentum equation for the coolant:
\[
\rho_l (\mathbf{V} \cdot \nabla \mathbf{V}) = -\nabla p + \nabla \cdot (\mu_l \nabla \mathbf{V}) \tag{2}
\]

Energy equation for the coolant:
\[
\rho_c c_p \mathbf{V} \cdot \nabla T = \dot{\lambda} \nabla^2 T \tag{3}
\]

Energy equation for the solid:
\[
\dot{\lambda} \nabla^2 T = 0 \tag{4}
\]

Other boundary conditions needed for the computational unit are listed as follows [21, 22]:

At \(x = 0, W_w/2 \leq y \leq (W_w + W_c)/2 \) and \(H_b \leq z \leq H_b + H_c: \)
\[
u = u_{in}, \ v = w = 0, \ T = T_{in} \tag{5}\]

At \(x = L, W_w/2 \leq y \leq (W_w + W_c)/2 \) and \(H_b \leq z \leq H_b + H_c: \)
\[
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial w}{\partial x} = 0, \ p = p_{out} \tag{6}\]

At \(z = 0 \)
\[
-\dot{\lambda} \frac{\partial T}{\partial z} = q \tag{7}\]

At \(z = H_b + H_c \)
\[
\frac{\partial T}{\partial z} = 0 \tag{8}\]

In this study, the above governing equations along with the boundary conditions are solved by a finite element software, COMSOL MULTIPHYSICS. \(T_{in} \) is 300 K and \(q \) is 100 \(\text{W cm}^{-2} \). In each case of the simulation, the flow and thermal field are computed with approximately 200,000 degrees-of-freedom. All the simulations are done on a workstation with two eight-core CPUs (E5-2670) and 64 GB RAM. Under such conditions, it takes approximately 3 min to complete a single case and 250 h to complete an entire multi-objective optimization procedure.

Objective Functions. Instead of using a combined objective function, the multi-objective method considers all the design requirements simultaneously. In this paper, two conflicting objective functions are defined as follows:

\[
J_1 = \theta, \quad J_2 = P \tag{9}
\]

As mentioned earlier, thermal resistance \(\theta \) is calculated to assess the performance of heat transfer, while pumping power \(P \) is calculated to assess the performance of flow resistance, respectively. The thermal resistance can be calculated from
\[
\theta = \frac{T_{max} - T_{in}}{q \times N \times (W_c + W_w) \times L} \tag{10}
\]

where \(T_{max} \) is the maximum temperature at the base, \(N \) is the number of channel, which equals to the integer part of \(W/(W_c + W_w) \).

The initial MCHS width \(W \) and length \(L \) are 20 mm, respectively. Besides, it is noticed that the optimal MCHS width \(W \) may vary as channel unit geometry alters, which is also considered in the present work.

On the other hand, the pumping power is expressed as
\[
P = \dot{V} \times \Delta p \tag{11}\]

where \(\dot{V} \) is the volumetric flow rate of MCHS and \(\Delta p \) is the pressure drop through the channel.

Therefore, an optimal heat sink with low flow resistance and high heat transfer coefficient can be achieved as \(J_1 \) and \(J_2 \) are approaching minimum values. However, it is worth noting that the results of the multi-objective optimization are not a unique optimal solution but a set of nondominant solutions. The entire optimization procedure including the selecting technique is described in the Optimization Procedure section.

Optimization Procedure

Multi-Objective Optimization Algorithm. For many complex engineering problems, objectives under consideration often...
conflict with each other. When multiple objectives are involved, there is a common phenomenon that all the objective functions are combined into a single composite objective function for evaluating the overall performance, such as utility theory and weighted sum method. There are some inherent limitations since defining the weights is a difficult issue and some evaluation criteria also conflict with each other. The multi-objective evolutionary algorithms, however, are generalized approaches to determine a set of nondominant solutions (Pareto solutions). In the present study, an efficient multi-objective evolutionary algorithm, the nondominated sorting genetic algorithm [23], is employed to optimize two objective functions defined earlier. Following the concept of this algorithm, all individuals are ranked according to their fitness score based on the objective function values. Subsequently, in the process of selection, fitter solutions with high fitness score are more likely to be selected and preserved. Therefore, as the iterative process continues, the Pareto optimal solutions will be evolved gradually.

TOPSIS Selection. After obtaining the Pareto front consisting of Pareto solutions, the next step is to determine the best compromise solution for the application. Generally, selection work in multi-objective optimization is much more complex since each Pareto solution represents a compromise solution under different objective functions and we cannot directly choose the best one. However, following the basic concept that the chosen alternative should have the shortest distance from the positive ideal solution and the longest distance from the negative ideal solution, TOPSIS is a practical and classical approach for ranking and selecting alternatives. In this design work, the positive ideal solution has the smallest thermal resistance and pumping power, and the negative ideal solution is just the opposite. The computational procedure of TOPSIS is as follows:

1. Create a matrix \((x_{ij})_{m \times n}\) with \(m\) alternatives and \(n\) objectives.
2. Normalize the matrix \((x_{ij})_{m \times n}\) to \((t_{ij})_{m \times n}\) by using the equation below:
 \[t_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}}, i = 1, 2, ..., m, j = 1, 2, ..., n \]
 \((12) \)
3. Set the weight coefficient \(w_j\) and obtain the weighted normalized matrix \((a_{ij})_{m \times n}\) by:
 \[a_{ij} = w_j \times t_{ij}, i = 1, 2, ..., m, j = 1, 2, ..., n \]
 \((13) \)
4. Determine the positive ideal alternative \(A^+\) and the negative ideal alternative \(A^-\):
 \[A^+ = (\min(a_{11}, \ldots, a_{1n}), \min(a_{21}, \ldots, a_{2n}), \ldots, \min(a_{n1}, \ldots, a_{nn})) \]
 \((14) \)
 \[A^- = (\max(a_{11}, \ldots, a_{1n}), \max(a_{21}, \ldots, a_{2n}), \ldots, \max(a_{n1}, \ldots, a_{nn})) \]
 \((15) \)
5. Calculate the distance between the target alternative \(A\) and the positive ideal alternative \(A^+\), and the distance between the target alternative \(A\) and the negative ideal alternative \(A^-\):
 \[d_i^+ = \sqrt{\sum_{j=1}^{n} (a_{ij} - A^+)^2}, i = 1, 2, ..., m, j = 1, 2, ..., n \]
 \((16) \)
 \[d_i^- = \sqrt{\sum_{j=1}^{n} (a_{ij} - A^-)^2}, i = 1, 2, ..., m, j = 1, 2, ..., n \]
 \((17) \)
6. Calculate the relative closeness to the ideal solution of alternatives
 \[C_i = \frac{d_i^-}{d_i^+ + d_i^-}, i = 1, 2, ..., m \]
 \((18) \)
7. Rank the alternatives according to the values of \(C_i\), and the final compromise solution \(A_{final}\) is
 \[A_{final} = A \in \max(C_i) \]
 \((19) \)

Constraints and Design Variables. For the purpose of application and fabrication, some constraints are considered in the present optimization work

1. The volumetric flow rate is fixed.
2. The materials cost of MCHS is constant (i.e., the volume of copper is fixed).

The mathematical form is
 \[(N \times u_m \times W_c \times H_c) = \text{constant} \]
 \((20) \)
 \[(H_b \times N \times (W_c + W_a) + N \times W_a \times H_a) = \text{constant} \]
 \((21) \)

The next step is determining the design variables which will affect the comprehensive performance. Xie et al. [3] investigated the influence of channel height \(H_c\), channel width \(W_c\), wall thickness \(W_a\), and bottom plate thickness \(H_b\). Based on their results, \(H_c\), \(W_c\), \(W_a\) are selected as design variables while \(H_b\) can be obtained by Eq. (21). The design variables for the optimization of the present heat sink configurations are allowed to vary within the following ranges:

\[2 \text{mm} \leq H_c \leq 4 \text{mm} \]
\[0.2 \text{mm} \leq W_a \leq 0.8 \text{mm} \]
\[0.2 \text{mm} \leq W_c \leq 0.8 \text{mm} \]

Moreover, \(H_b \geq 0.2 \text{mm}\) is also considered for ease of manufacture. From Eq. (21), it is obvious that this constraint is nonlinear. In the present study, the penalty function based on the concept of genetic algorithm is applied to solve this problem. This method replaces a constrained optimization problem by several of unconstrained problems. To be specific, infeasible solutions (i.e., \(H_b < 0.2 \text{mm}\)) are also allowed into the population but the fitness values are modified according to the penalty function. After sufficient time, the optimal solutions to the unconstrained problem using the modified fitness values coincide with those of the original constrained problem. The entire optimization procedure is shown in Fig. 3.

Results and Discussion

Validation. In the COMSOL MULTIPHYSICS, the solution time and memory requirements are strongly related to the number of degrees-of-freedom which depend on the meshing type, the shape functions selected, and the number of dependent variables from the different physics. Due to the simple geometry of the MCHS, the hexahedral grid is constructed for the present numerical simulation. Subsequently, three different grid schemes with different numbers of degrees-of-freedom are tested to guarantee that the simulation results are independent on the grid, which is listed in Table 1. It is found that the max error for this study between grid 2 and grid 3 is 1.8281%. However, the computation time of grid 3 is about twice that of grid 2. Hence, grid 2 is applied in the optimization to improve computation efficiency without loss in accuracy.

In order to provide a numerical validation, the results of the present work are compared with the previous work proposed by Xie et al. [3]. As shown in Figs. 4 and 5, both thermal resistance \(\theta\) and pressure drop \(\Delta P\) decrease as \(H_c\) increases, which is in good agreement with the reference. When \(H_c\) varies from 2 mm to
4 mm, the maximum differences of θ and Δp are 8.11% and 3.54%, respectively. Therefore, the cases used in the present study are valid for optimization work.

Multi-Objective Optimization Results. Figure 6 illustrates the Pareto front obtained by using the proposed design method. It is obvious that the pumping power P would not decrease from one Pareto optimal to another except increasing the thermal resistance h, which means all these solutions obtained are nondominated. Besides, it is found that P varies from 0.00307 W to 0.05388 W and θ varies from 0.03707 K W$^{-1}$ to 0.10742 K W$^{-1}$.

Figure 7 gives optimal parameters of the heat sink from the Pareto front. The individual numbers are sorted by ascending the values of θ. It is found that the values of optimal W_w are basically unchanged in the range from 0.2073 mm to 0.2422 mm. Similarly, the optimal values of H_c are also basically unchanged around 3.9 mm when the individual number of Pareto front greater than 10 (i.e., $P < 0.033 W$). The above results indicate that MCHS with higher H_c and lower W_w may have a better comprehensive performance in the present study. On the other hand, W_c and H_b gradually increase along with the entire Pareto front. Besides, it is noticed that H_b is in the range from 0.2066 mm to 1.1730 mm, which satisfies the condition of $H_b \geq 0.2$ mm. Based on this result, it is proved that the penalty function can effectively solve the non-linear problem in this study.

![Fig. 3 Flowchart of the optimization work](image)

![Fig. 4 Comparison of present thermal resistance, θ, with previous work obtained by Xie et al. [3], for $W_w = W_c = 0.5$ mm, $H_b = 1$ mm, and $u_{in} = 1$ m s$^{-1}$](image)

![Fig. 5 Comparison of present pressure drop, Δp, with previous work obtained by Xie et al. [3], for $W_w = W_c = 0.5$ mm, $H_b = 1$ mm, and $u_{in} = 1$ m s$^{-1}$](image)

![Fig. 6 Distribution of the Pareto front](image)

Table 1 Grid-independent test with $H_c = 2$ mm, $W_c = 0.5$ mm, $W_w = 0.5$ mm, $H_b = 1$ mm, and $u_{in} = 1$ m s$^{-1}$

<table>
<thead>
<tr>
<th>Degrees-of-freedom</th>
<th>θ (K W$^{-1}$)</th>
<th>% error</th>
<th>P (W)</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid 1</td>
<td>86,893</td>
<td>0.09001</td>
<td>1.1422</td>
<td>0.02437</td>
</tr>
<tr>
<td>Grid 2</td>
<td>181,195</td>
<td>0.09105</td>
<td>0.5461</td>
<td>0.02524</td>
</tr>
<tr>
<td>Grid 3</td>
<td>347,680</td>
<td>0.09155</td>
<td>—</td>
<td>0.02571</td>
</tr>
</tbody>
</table>

022803-4 / Vol. 140, FEBRUARY 2018 Transactions of the ASME
Other information of minichannel unit, including inlet velocity (u_{in}), inlet area (a_{in}), and numbers of channel units (N), is illustrated in Fig. 8. It is found that both u_{in} and N gradually decrease along with the Pareto front, while a_{in} is contrary to them. Furthermore, it is noticed that all the optimal values of u_{in} are less than 1 m s$^{-1}$, which means the initial inlet velocity is excessively high and not appropriate for the application.

Subsequently, the optimal width W' and hydraulic diameter D_h of whole MCHS are illustrated in Fig. 9. The optimal W' varies from 19.3275 mm to 19.9988 mm, which is 3.363% to 0.006% less than the initial width W. According to the above results, it could be speculated that the additional material will have little influence on both the performance and cost if heat sink width needs to meet the requirement. On the other hand, D_h has a significant increase from 0.3855 mm to 1.3002 mm, since the structure of MCHS keeps changing along with the Pareto front. Furthermore, the fluid flowing situation which is described by the Reynolds number (Re) also alters with u_{in} and D_h. However, it can be found that all the Reynolds numbers are less than 2300, which means the laminar assumption is suitable in this study.

Selection and Comparison. As shown in Fig. 6, all the Pareto solutions are nondominated and we cannot directly choose the best one according to the values of θ or P. Nevertheless, it is noticed that further reduction for θ is much more difficult than early stages, which means the comprehensive performance of solutions at each end of the Pareto front should not be high. In the present study, the best compromise solution is determined by employing TOPSIS previously described, where $w_1 = w_2 = 0.5$. Table 2 gives the scores of Pareto solutions and the 19th individual from the Pareto front is selected as the best compromise solution. Its position on Fig. 6 accords with the concept that the best solution should be close to the ideal positive solution.

In order to investigate the effects of the optimization and selection, performances of different optimal solutions and the initial one are illustrated in Fig. 10. θ_{minimum} and P_{minimum} represent the optimal solutions with the minimum thermal resistance and minimum pumping power, respectively. Compared with the initial one, the thermal resistance can be reduced by 59.29% with an increase of 113.48% in pumping power, while the pumping power can be reduced by 87.82% with an increase of 17.98% in thermal resistance, respectively. It is indicated that both θ and P can be greatly improved when single-objective optimization is considered.

Figure 10 also shows the effect of decision-making technique on balancing two conflicting objectives, where optimal$_{\text{TOPSIS}}$ represents the optimal solution determined by TOPSIS. Comparison between θ_{minimum} and optimal$_{\text{TOPSIS}}$ shows that the thermal resistance of optimal$_{\text{TOPSIS}}$ is 57.64% higher than θ_{minimum}, but the pumping power of optimal$_{\text{TOPSIS}}$ is 77.77% lower than θ_{minimum}. Similarly, when comparing P_{minimum} and optimal$_{\text{TOPSIS}}$, it is found that pumping power of P_{minimum} is 77.77% lower than optimal$_{\text{TOPSIS}}$ while thermal resistance has an increase of 83.83%. As a result, using TOPSIS is effective for improving heat transfer performance of MCHS without bringing too much pumping.

<table>
<thead>
<tr>
<th>Individual#</th>
<th>Score</th>
<th>Rank</th>
<th>Individual#</th>
<th>Score</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3451</td>
<td>36</td>
<td>19</td>
<td>0.7918</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.3543</td>
<td>35</td>
<td>20</td>
<td>0.7868</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0.3778</td>
<td>34</td>
<td>21</td>
<td>0.7807</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0.3805</td>
<td>33</td>
<td>22</td>
<td>0.7788</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0.4005</td>
<td>32</td>
<td>23</td>
<td>0.7728</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>0.4266</td>
<td>31</td>
<td>24</td>
<td>0.7687</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>0.4504</td>
<td>30</td>
<td>25</td>
<td>0.7619</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>0.48</td>
<td>29</td>
<td>26</td>
<td>0.7597</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>0.5143</td>
<td>28</td>
<td>27</td>
<td>0.7504</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>0.5325</td>
<td>27</td>
<td>28</td>
<td>0.7448</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>0.5857</td>
<td>26</td>
<td>29</td>
<td>0.7265</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>0.6147</td>
<td>25</td>
<td>30</td>
<td>0.7112</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>0.6495</td>
<td>24</td>
<td>31</td>
<td>0.7081</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>0.6887</td>
<td>36</td>
<td>32</td>
<td>0.6997</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>0.7141</td>
<td>15</td>
<td>33</td>
<td>0.6878</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>0.7387</td>
<td>12</td>
<td>34</td>
<td>0.6721</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>0.7593</td>
<td>10</td>
<td>35</td>
<td>0.6645</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>0.7775</td>
<td>6</td>
<td>36</td>
<td>0.6549</td>
<td>23</td>
</tr>
</tbody>
</table>
power. Furthermore, both θ and P of optimal$_{TOPSIS}$ are lower (35.82% and 52.55%, respectively) than those of initial one, which demonstrates the effectiveness of the approach proposed in this paper.

Conclusions

The structural design of minichannel heat sink is a multi-objective problem taking minimum thermal resistance and pumping power into consideration, simultaneously. The cost of material and volumetric flow rate are fixed in the present study, where penalty function is applied to solve this nonlinear problem. In the optimization process, multi-objective genetic algorithm and finite element method are coupled to solve the problem mentioned earlier and obtain a series of Pareto solutions. Subsequently, TOPSIS technique is employed to rank these solutions and determine the best compromised one. Based on the optimization results, the following conclusions can be drawn:

(1) For the optimal solutions, as θ increases and P decreases, W_0 is basically unchanged in the range from 0.2073 mm to 0.2422 mm, while H_0 increases from 3.8456 mm and is also basically unchanged when $P < 0.033$ W. On the other hand, W_c and H_c gradually increase along with the entire Pareto front.

(2) Since the structures have been greatly changed after the optimization, both D_h and Re have a significant increase as θ increases, but the flowing situation keeps as laminar. The optimal W is essentially constant, which means the performance and cost will be almost unaffected if heat sink width needs to meet the requirement.

(3) In the present study, one objective function can be substantially reduced regardless the influence on the other one. After the TOPSIS selection, θ and P have been appropriately balanced. Consequently, both θ and P of optimal$_{TOPSIS}$ are lower (35.82% and 52.55%, respectively) than those of initial one.

Funding Data

- National Key Basic Research Program of China (973 Program) (Grant No. 2013CB228302).
- National Natural Science Foundation of China (Grant No. 51376069).

Nomenclature

- $a =$ area
- $C =$ relative closeness to the ideal solution
- $c_p =$ specific heat
- $D_h =$ hydraulic diameter
- $H =$ height or thickness
- $f =$ objective function
- $L =$ channel length
- $p =$ pressure
- $P =$ pumping power
- $Re =$ Reynolds number, $\rho u_m D_h/\mu_f$
- $T =$ temperature
- $u =$ flow velocity
- $V =$ volumetric flow rate
- $x, y, z =$ orthogonal coordinate system
- $\Delta p =$ pressure drop

Greek Symbols

- $\theta =$ dimensionless temperature
- $\lambda =$ thermal conductivity
- $\mu =$ dynamic viscosity
- $\rho =$ fluid density

Superscripts

- $b =$ bottom
- $c =$ channel
- $f =$ fluid
- $i =$ inlet
- $\max =$ maximum value
- $s =$ solid
- $w =$ wall

References

