
International Journal of Heat and Mass Transfer 233 (2024) 126019

Available online 31 July 2024
0017-9310/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Deep learning assisted anode porous transport layer inverse design for
proton exchange membrane water electrolysis

Xiaoxuan Yang a, Mingliang Li a, Jun Shen b, Zhichun Liu a, Wei Liu a, Rui Long a,*

a School of energy and power engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
b Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, PR China

A R T I C L E I N F O

Keywords:
Proton exchange membrane water electrolysis
cell
Anode porous transport layer
Heterogeneous porosity distribution
Deep learning

A B S T R A C T

Proton exchange membrane water electrolysis cell (PEMEC) offers a clean and promising way for hydrogen
production. The spatial internal current density and temperature distribution uniformity significantly determines
its reliability and durability, as well as the hydrogen production performance. Here, a non-isothermal 3D
computational fluid dynamics (CFD) model for PEMEC with parallel flow fields is employed to investigate the
impacts of the heterogeneous porosity distribution within the anode porous transport layer (APTL) on the in-
ternal current density and temperature distribution uniformity and energy conversion performance. 800 het-
erogeneous APTL porosity distributions are applied for CFD calculation, providing dataset for deep learning. The
deep operator network (DeepONet) is employed to mapping the heterogeneous APTL porosity distribution to the
real physical fields such as temperature, oxygen molar fraction and current density distribution fields. Full-
connected neural network is employed to construct the relationship between the heterogeneous APTL porosity
distribution to the performance metrics. The gradient descent algorithm is applied to obtain APTL porosity
distributions corresponding to the optimal internal current density and temperature distribution uniformity,
respectively. Compared with the uniform porosity distribution, the current density and temperature uniformity
are improved by 45.544 % and 26.680 %, respectively, at an average APTL porosity of 0.5.

1. Introduction

Growing fossil fuel exploitation and consumption and the induced
climate and environmental problems, as well as the imbalance between
energy supply and demand have drawn increasing concern [1].
Hydrogen energy is considered a reliable alternative to traditional fossil
fuels [2]. Among the developed hydrogen production ways, proton ex-
change membrane water electrolysis cell (PEMEC) has attracted atten-
tion for their faster response time, more compact structural design,
higher current density and hydrogen purity [3,4].
Porous transport layer (PTL) plays a multitude of roles in PEMECs,

including heat transfer, electrical conduction, oxygen and liquid water
transport, and mechanical support [5-9]. Compared to the hydrogen
precipitation reaction at the cathode, relatively slow oxygen precipita-
tion reaction at the anode acts as the main limiting factor for the
enhanced electrochemical performance of PEMEC [10]. Properties such
as material, structural parameters and wettability of anode porous
transport layer (APTL) have a significant impact on oxygen evolution
reaction (OER), which in turn affects the overall performance of PEMEC

[11].
Numerical simulation is widely employed regarding the study on the

PTL of the PEMEC, as experiments tend to have long time and high costs.
Han et al. [12] developed a mathematical model to investigate the effect
of contact angle, porosity and pore size of the diffusion layer on the
performance and efficiency of PEMEC. They found that increasing the
porosity and pore diameter and decreasing the contact angle can in-
crease the saturation of liquid water along the thickness direction of the
diffusion layer, thus improving the performance and efficiency of
PEMEC. Zou et al. [13] showed that the increase of PTL thickness and
porosity increases the ohmic overpotential. Toghyani et al. [14] devel-
oped a non-isothermal, fully 3D model for comprehensive analysis and
discussed the effects of operating temperature, cathode pressure, film
thickness, diffusion layer thickness and porosity on the electrolytic cell,
revealing that thinner diffusion layers and larger porosities improve the
performance. Liu et al. [15] investigated the effect of different PTL
structures on oxygen transport, and found that higher porosity, larger
fiber radius, and smaller anisotropy parameter are favorable for the
formation of oxygen propagation paths.
The wettability of PTL and the interaction between PTL and catalyst
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layer (CL) have also been considered. Li et al. [16] tuned the wettability
of diffusion layers using a silane monolayer, and the experimental re-
sults showed that oxygen bubble separation was greater in diameter and
frequency in the hydrophobic diffusion layer, which could lead to
additional two-phase transport losses at current densities greater than 2
A/cm2. Jiang et al. [17] investigated the wettability of PTL and CL by a
3D two-phase PEMEC model. They found that the combination of hy-
drophilic PTL and hydrophobic CL had better performance. Kang et al.
[18] showed that the larger the porosity and smaller the pore size of the
diffusion layer, the smaller the corresponding CL surface internal
resistance and the higher the catalyst utilization. Wang et al. [19]
fabricated a flow-enhanced liquid/gas diffusion layer using a wet
etching method to facilitate material transfer in the area covered by the
polar plate.
Schuler et al. [20] found that PTL with a layered structure increased

catalyst utilization while reducing the mass transfer overpotential at the
anode. It is furhter revealed by Lee et al. [21], who prepared PTLs with
spatial gradients by vacuum plasma spraying. Employing a lower
porosity near the CL and a higher porosity near the flow field resulted in
a 29 % reduction in cell potential, a 38 % reduction in mass transfer
overpotential, and a 50 % reduction in PTL gas saturation at a current
density of 4.5 A/cm2. Li et al. [22] developed a 2D two-phase flowmodel
of PEMEC anode based on the VOF method to investigate the oxygen
transport mechanism in PTL, revealing that there exists an ``isolation
belt’’ structure consisting of a series of narrow throats in the PTL, which
prevents the merging of oxygen transport pathways. Zhou et al. [23]
developed a 3D, isothermal, single-channel model that considered the
porosity distribution along the flow direction, showing that increasing
the porosity of APTL along the flow direction can improve the current
density uniformity.
However, purely numerical calculations take up a large amount of

computational resources, making it difficult to quickly obtain the
physics fields and performance indexes under any given spatial

geometric or property distribution. In addition, the optimal spatial
characteristic distributions could not be accurately achieved. Deep
learning has been widely used in engineering design and prediction of
multi-physics field systems, such as deep operator network (DeepONet)
[24]. DeepONet, based on a general approximation theorem for opera-
tors, allows for efficient approximation of nonlinear operators in com-
plex systems using relatively small datasets and provides real-time
predictions for complex multi-physics field systems. Goswami et al. [25]
proposed a physically based variational DeepONet for predicting crack
paths in brittle materials and demonstrated its effectiveness through two
benchmark tests of brittle fracture. Kumar et al. [26] applied DeepONet
to accelerate the combustion chemistry of complex fuels. The method
predicts the evolution of components and temperature over the relevant
integration time and shows good prediction accuracy. Sahin et al. [27]
implemented rib profile optimization for gas turbine internal cooling
channels based on the DeepONet framework. Their proposed DeepONet
uses stochastic continuous rib geometries with control points as inputs
to output the pressure and heat transfer distributions around the shaped
ribs. Shukla et al. [27] applied DeepONet to shape optimization of
aircraft airfoils, where the model was able to predict the flow around
arbitrary geometries with sufficiently excellent accuracy.
The inhomogeneous spatial current distribution and temperature

distribution in the PEMEC degrade the reliability and durability, which
are significantly impacted by heterogeneous APTL porosity distribution
[28]. Previous studies regarding APTL porosity mainly involved APTLs
with uniform porosity [12-15]. And the studies on inhomogeneous
porosity are limited to the one-dimensional distribution along the flow
direction [20-23]. Efforts regarding to spatial high-dimensional het-
erogeneous porosity distribution perpendicular to the APTL thickness
direction has never been addressed. And the optimal spatial
high-dimensional heterogeneous APTL porosity distributions leading to
upgraded PEMEC performance have never been revealed. Here, a 3D
non-isothermal CFD model of PEMEC with parallel flow fields is

Abbreviation

ACL anode catalyst layer
APTL anode porous transport layer
BP bipolar plate
CCL cathode catalyst layer
CFD computational fluid dynamics
CH channel
CL catalyst layer
CPTL cathode porous transport layer
DeepONet deep operator network
OER oxygen evolution reaction
PEM proton exchange membrane
PEMEC proton exchange membrane water electrolysis cell
PTL porous transport layer

Nomenclature
av specific active surface areas (1/m)
C substance concentration (mol/m3)
Cp specific heat capacity (J/(K kg))
D pore size (m)
Dij diffusion coefficient (m2/s)
E electric energy consumed (kW h/m3)
I current (A)
i0 reference exchange current density (A/m2)
iv local electrochemical reaction rate (A/m3)
j current density (A/m2)
K permeability (m2)
k thermal conductivity (W/(K m))

p pressure (Pa)
R resistance (Ω)
RH2 production rate of hydrogen (mol/s)
S source term
T temperature (K)
u velocity (m/s)
U Uniformity
V voltage (V)
Veq hemodynamic equilibrium potential (V)
α charge transfer coefficient
e porosity
h overpotential (V)
θ covering coefficient
λ water content
μ dynamic viscosity (Pa/s)
ρ density (kg/m3)
σ conductivity (S/m)
φ potential (V)

Subscripts and superscripts
a anode
act activation
ave average
c cathode
eff effective
fm fluid
m membrane
s electronic
sa solid
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employed to investigate the impacts of the heterogeneous spatial
high-dimensional APTL porosity distribution on the internal current
density and temperature distribution uniformity and energy conversion
performance. 800 heterogeneous spatial high-dimensional APTL
porosity distributions perpendicular to the APTL thickness direction are
applied for CFD calculation, providing dataset for deep learning. The
DeepONet is utilized for mapping the heterogeneous APTL porosity
distribution to the real physical fields such as temperature, oxygen
molar fraction and current density distribution fields. Neural network is
employed to construct the relationship between the heterogeneous APTL
porosity distribution to the performance metrics. The optimal APTL
porosity distributions corresponding to the minimum internal current
density and temperature distribution uniformity are further obtained via
the gradient descent algorithm, respectively.

2. Material and methods

2.1. Physical model of the PEMEC

The structure and computational domain of the PEMEC is shown in
Fig. 1. It consists of the proton exchange membrane (PEM), bipolar
plates (BPs), channels (CHs), an anode/cathode porous transport layer
(APTL/CPTL) and an anode/cathode catalyst layer (ACL/CCL). The
materials of these components are also shown in Fig. 1. The material of
BP and APTL is titanium; the material of CPTL is porous carbon; and the
material of PEM is Nafion. The anode catalyst uses Ir, which has good
catalytic activity and stability under acidic conditions, while the main
component of the cathode catalyst is Pt.
The geometrical parameters of the model are listed in Table 1. Liquid

water passes through the APTL to reach the ACL, where it is decomposed
into protons, electrons and oxygen by the action of the catalyst and the
external circuit.

H2O→2H+ +
1
2
O2+2e− (1)

Protons pass through the PEM to the CCL, and react with electrons to
produce hydrogen.

2H++2e− →H2 (2)

The numerical model consists of equations for the conservation of
mass, momentum, charge and energy. In order to simplify the model,
according to previous literatures [23,29,30]:, some assumptions were
employed: (1) Single-phase flow was used to calculate the velocity and

pressure distributions of fluids; (2) The flow is assumed to be steady,
incompressible and laminar; (3) Water is always in the liquid state and
the process of phase change of water is neglected; (4) Water molecules
pass through the proton exchange membrane under the action of electric
tugging force is neglected, and the water content in the membrane was
always saturated; (5) The gas cross-permeation effect is not taking into
account.

2.1.1. Electrochemistry modeling
The electrochemical reactions at the anode and cathode in the

PEMEC are given by the Butler–Volmer equation [31]:

iv,a = av,ai0,a(1 − θ)
(

exp
(

αaFηact
RT

)

− exp
(

−
αcFηact
RT

))

(3)

iv,c = av,ci0,c(1 − θ)
(

exp
(

αaFηact
RT

)

− exp
(

−
αcFηact
RT

))

(4)

where iv,a and iv,c are the local electrochemical reaction rates, av,a and
av,c are the specific active surface areas, i0,a and i0,c are the reference
exchange current densities, and αa and αc are the charge transfer co-
efficients. The subscripts a and c denote the anode and cathode
respectively. Since the simulation involves higher current densities, the
effect of bubbles covering the electrodes on the current density is
considered in this paper, the covering coefficient θ is defined as θ =
(

j
jlim

)0.3
, where j is the current density, jlim = 3× 105 Am− 2 is limiting

current density [32]. ηact is the activation overpotential, which is the
driving force for electron and ion transport.

Fig. 1. Physical model and boundary distributions.

Table 1
Geometric parameters of the PEMEC model.

Geometric parameter Value

Reaction area 110 mm2 (11 mm × 10 mm)
Inlet channel length 9.5 mm
Outlet channel length 9.5 mm
Parallel channel length 8 mm
Channel height 1 mm
Channel width 1 mm
BP thickness 1.5 mm
PTL thickness 0.3 mm
CL thickness 0.02 mm
PEM thickness 0.178 mm
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ηact = φs − φm − Veq (5)

where φm and φs are the electrolyte and solid phase potentials, respec-
tively. Veq is the thermodynamic equilibrium potential according to the
Nernst equation, which neglects the influence of the component frac-
tion. The potential at the cathode side is 0, so Veq is the equilibrium
potential of the anode and can be calculated by the following expression
[33]:

Veq = 1.229 − 9.0× 10− 4(T − 298.15) (6)

The charge conservation equation for electrons and protons can be
expressed as [34]:

∇⋅
(
− σeffs ∇φs

)
= Sφ,s (7)

∇⋅(− σm∇φm) = Sφ,m (8)

where Sφ,s, Sφ,m are the current source terms at the anode and cathode
respectively, σeffs is the effective electronic conductivity, and σm is the
electrolyte conductivity. The electrolyte conductivity is a function of
water content and temperature [35]:

σm = (0.5139λ − 0.326)exp
(

1268
(
1
303

−
1
T

))

(9)

where λ is the water content of the membrane, which in this paper is
assumed to be saturated with a value of 14 [36]. Effective electronic
conductivity is determined by the Bruggeman equation [23],

σeffm = (1 − ε)1.5σs (10)

where ε is the porosity, σs is the conductivity of solid. Changes in
porosity will have an effect on the contact resistance between the
diffusion layer and the catalyst layer [21], which, according to the
empirical equation, can be expressed as [18]

R = 0.014×
d0
ε0

(11)

where d0 and ε0 are dimensionless coefficients, d0 = D
1000, D is the pore

size of the PTL, ε0 = ε
0.1. Parameters used in electrochemistry modeling

are shown in Table 2.

2.1.2. Mass transfer modeling
Continuity equation [41]:

∇⋅(ερu) = 0 (12)

where ρ is the density, and u is the mean velocity vector.
Momentum conservation equation [41]:

∇⋅(ερuu) = − ε∇p+∇⋅(εμ∇u) + Su (13)

where p is the pressure, μ is the dynamic viscosity, Su is the momentum
source term.

Su = −
μ
K

ε2u (14)

where K is the permeability. The permeability of the diffusion layer is
determined by the Kozeny–Carman model [42]

K =
D2

180
ε3

(1 − ε)2
(15)

The diffusion of gases is described by the component conservation
equation [43]:

∇⋅(εuiCi) = ∇⋅
(
Deffij ∇Ci

)
+ Si (16)

where i, j is the different substance species (H2O, O2, H2), Ci is the cor-
responding substance concentration, Si is the source term of the corre-
sponding substance, Deffij is the effective diffusion coefficient of specie i
and j, defined as follows [44]:

Deffij = ε1.5D0ij
(
T
T0

)1.5(p0
p

)

(17)

2.1.3. Heat transfer modeling
The energy equation for heat transfer is described by Srinivasan [31]:

∇
(
ρeffCp,effuT

)
= ∇⋅

(
keffT

)
+ ST (18)

where ST is the energy source term, ρeff , keff and Cp,eff are the effective
density, thermal conductivity and specific heat capacity, respectively.

ρeff = (1 − ε)ρsa + εxρfm (19)

Cp,eff = (1 − ε)Cp,sa + εxCp,fm (20)

keff = (1 − ε)ksa + εxkfm (21)

where the subscripts sa and fm represent solid and fluid mixtures
respectively.
The parameters used in the heat and mass transfer module are shown

in Table 3. The source terms in the heat and mass transfer modeling are
listed in Table 4.

2.1.4. Mesh independence check and model validation
The commercial software COMSOL Multiphysics was used to solve

above governing equations. The boundaries of the model are presented
in Fig. 1. In the calculation, liquid water enters the cell from boundaries
2 and 3 at a constant temperature Tin= 40 ◦C and flow rateQin= 60 mL/
min. A constant pressure p0 = 1 atm is applied at boundaries 5 and 6. A
current density of 40,000 A/m2 is applied at boundary 2, and Boundary
1 is grounded. The mesh independence check is performed at an

Table 2
Electrochemical parameters for the numerical calculation.

Parameter Symbol Value Ref

Anode charge transfer coefficient αa 0.5 [37]
Cathode charge transfer coefficient αc 0.5 [37]
Anode reference exchange current density i0,a 0.1 A/m2 [38]
Cathode reference exchange current density i0,c 10000 A/m2 [38]
Anode specific reaction surface av,a 1 × 105 1/m [29]
Cathode specific reaction surface av,c 1 × 106 1/m [29]
Porosity of porous transport layer εCL 0.25 [39]
Porosity of catalyst layer εPTL 0.5 [40]
Faraday’s constant F 96,485 C/mol
Universal gas constant R 8.314 J/(mol K)

Table 3
Parameters of the heat transfer modeling.

Parameter Symbol Value Ref

Liquid water density ρH2O 998 kg/m3 [45]
Membrane density ρmem 1980 kg/m3 [46]
Ti density ρTi 4500 kg/m3 [47]
Specific heat capacities of
membrane

Cp,mem 1090 J/(kg K) [48]

Specific heat capacities of
Ti

Cp,Ti 523 J/(kg K) [47]

Specific heat capacities of
H2

Cp,H2 28.89–8.314 × 10− 4 T + 1.914 ×

10− 6 T2 J/(mol K)
[49]

Specific heat capacities of
O2

Cp,O2 25.431 + 1.371 × 10− 2 T− 4.281 ×
10− 6 T2 J/(mol K)

[49]

Thermal conductivity of
membrane

kmem 0.21 W/(m K) [50]

Thermal conductivity of
Ti

kTi 15.2 W/(m K) [47]

X. Yang et al.
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operating voltage of 2.0 V. Six mesh numbers are considered, including
53,721, 140,006, 265,591, 550,826, 1,026,052, and 1,802,809. As
shown in Fig. 2, the relative errors of the current density and the average
temperature of the ACL at mesh numbers 1,023,052 and 1,802,809 are
0.015 % and 0.001 %, respectively. In order to reasonably allocate
computational resources, the mesh number of 1,026,052 is employed in
the following calculations.
To ensure the accuracy of the model, the polarization curve calcu-

lated at Qin = 15 mL/s, Tin = 45 ◦C were compared with the experi-
mental data from Majasan et al. [51]. As shown in Fig. 3, the simulation
results are in good agreement with the experimental data, which justifies
the model employed in present study.

2.2. Deep learning

Fig. 4 shows a schematic of the architecture of DeepONet, which
consists of a trunk network and a branch network. p is the width of the
network. The network takes inputs composed of two parts: u and y, and
outputs G(u)(y). The trunk network is responsible for processing the
domain of the input function, which takes y as input and outputs a set of
feature vectors corresponding to the points on the input domain [t1, t2,
…, tp]T∈RP. The branch network is responsible for processing the input
function which takes [u(x1), u(x2), …, u(xm)]T as inputs, and outputs a
scalar bk ∈ R for k = 1,2,…,p. For data generation, we use the mean-zero
Gaussian random fields for the input function u(x):

u(x) ∼ GP(0, kl(x1, x2)) (22)

where the covariance kernel kl(x1, x2) = exp
(
− ‖ x1 − x2‖2 /2l2

)
is the

Gaussian kernel with a length scale parameter l > 0. The length-scale l
determines the smoothness of the sampled function, and larger l leads to
smoother u [24].

The output of the branch network is dot-produced or otherwise
combined with the output of the backbone network to generate a pre-
diction of the response of the input function at a particular domain
point, and the output can be expressed as [24]:

G(u)(y) ≈
∑p

k=1

b..(u(x1), u(x2), ..., u(xm))
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

branch

t..(y)
⏟̅⏞⏞̅⏟
trunk

(23)

The loss function applied here is the relative root-mean-square errors
(r.m.s.e.) between the true value of G(u)(y) and the network prediction
for the input ( [u(x1), u(x2),…, u(xm)], y). In this work, the DeepONet is
utilized for mapping the heterogeneous APTL porosity distribution to
the real physical fields such as temperature, oxygen molar fraction and
current density distribution fields. The prediction of performance met-
rics is conducted via full-connected neural networks with the APTL
porosity distribution as the input.

3. Results and discussion

3.1. Effects of spatial heterogeneous APTL porosity distribution

In order to investigate the effect of the heterogeneous APTL porosity
on the performance of the cell, different heterogeneous porosity distri-
butions were randomly generated for calculation. Three random
porosity distributions with an average porosity of 0.5 were selected and
named R1, R2, R3. The performance under the uniform porosity is also
calculated and compared. Since this study focus on the APTL porosity,

Table 4
Source terms in the conservation equations.

Source terms Units

Si = {

− |iv|MH2O/2F
|iv|MO2 /4F
|iv|MH2 /2F

kg/(m3 s)

Su = −
μ
K

ε2u kg/(m2 s)

ST = {

|iv |
(
|ηact,a|− (ΔSaT)/4F

)
+ j2/σs + j2/σm

|iv |
(
|ηact,c|− (ΔScT)/4F

)
+ j2/σs + j2/σm

j2/σBP
j2/σPTL
j2/σmem

W/m3

Sφ,s= {
iv(inanode)
− iv(incathode)

Sφ,m = {
− iv(inanode)
iv(incathode)

A/m2

Fig. 2. Mesh independence check.

Fig. 3. Comparison of polarization curves.

Fig. 4. The DeepONet architecture.

X. Yang et al.
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the physical fields presented are selected from the anode side. The
temperature field and oxygen molar fraction field are located at the
interface between the flow field and the APTL, and the current density
field is chosen at the interface between the ACL and the PEM.
Fig. 5 shows the temperature, oxygen mole fraction and current

density distributions for four different porosity distributions under the
average porosity of 0.5. Among them, ``Uniform’’ is the uniform
porosity distribution, while R1, R2 and R3 are three different random
porosity distributions. As shown in Fig. 5, for the uniform porosity
configuration, higher values of temperature and current density occur in
the upper left corner. Non-uniform temperature and current density
distribution present a negative impact on the stability and lifetime of the
PEMEC. It is worth mentioning that the temperature presents a higher
value at the corresponding location of the flow channel, due to the fact
that the heat transfer coefficient of the metallic material is higher than
that of the fluid. The temperature and current density distribution vary
obviously under different porosity distributions. The locations of oxygen
aggregation in the APTL also exhibit different behaviors. R1 configu-
ration leads to more uniform temperature and current density distri-
bution than the electrolytic cell with uniform porosity.
To better evaluate the uniformity of the temperature distribution and

current density distribution, the uniformity indices U_φ is defined as
follows [52]:

U φ =

∫

A

⃒
⃒φ − φavg

⃒
⃒dA

∫

A
φavgdA

(24)

where φ and φavg are the local and average values of the interfaces,

respectively. The energy consumption of the cell is given by Wei et al.
[29]:

E =
Vcell⋅Icell

RH2 ⋅3600⋅22.4
(25)

where E is the electric energy consumed to produce hydrogen per unit
volume in the standard state, Vcell and Icell are the voltage and current of
the cell, respectively. RH2 is the production rate of hydrogen,

RH2 =
νH2 iv
nF

(26)

where the νH2 is the stoichiometric number of hydrogen, and n is the
number of electrons involved in the reaction.
Fig. 6 is the comparison of the performances depending on porosity

distributions. The voltage, energy consumption, temperature uniformity
index U_T at the APTL-flow field interface and current density unifor-
mity index U_I at the ACL-PEM interface were compared. As shown in
Fig. 6(a) and (b), for electrolytic cells with different porosity distribu-
tions, their voltage and energy consumption do not change obviously. It
suggests that the porosity distribution has a limited effect on the voltage
and energy consumption of the electrolytic cell. However, as seen in
Fig. 6(c) and (d), there is a big difference of the uniformity indices of
current density and temperature under different APTL porosity distri-
butions. The current density uniformity index U_I under R1 distribution
is 0.01834, which is 22.1 % lower than that under the uniform porosity
configuration. The temperature uniformity index U_T for the R1 distri-
bution is 0.00845, which is 17.4 % lower than that under the uniform
porosity configuration. It indicates that the APTL porosity distribution

Fig. 5. Temperature, oxygen mole fraction, and current density distributions under an average APTL porosity of 0.5. ‘Uniform’ is a uniformly distributed porosity,
and R1, R2, and R3 are three random porosity distributions.

X. Yang et al.
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has a significant effect on the uniformity indices. It is highly demanded
to optimize the APTL porosity distribution for better uniformity indices.

3.2. Deep learning assisted physical field and performance metrics
prediction

800 sets of random porosity distributions were generated, of which
700 sets were used for training the system and the remaining 100 sets
were used for testing the system. A set of test results from the test set is
presented here. Fig. 7 shows the chosen test porosity distribution. The
tested and predicted current density, temperature, and oxygen mole
fraction fields are compared in Fig. 8, where the test data are from the
CFD calculation and the prediction data are generated from the Deep-
ONet. As shown in Fig. 8, the predicted physical fields agree well with

the CFD calculated ones. The r.m.s.e. between the predicted and CFD
calculated values of the three physical quantity fields are 0.18 %, 1.31
%, and 0.05 %, respectively. Therefore, the DeepONet is able to accu-
rately predict the distribution of current density, temperature and oxy-
gen mole fraction in the electrolytic cell.
Fig. 9 shows the relative r.m.s.e. of the energy consumption, voltage

obtained via the full-connected neural network, and temperature uni-
formity index and current density uniformity index calculated via the
physical field generated by the DeepONet. The blue dots represent
outliers. The box plot covers the interval from the 25th percentile to the
75th percentile, with the mean (50th percentile) shown as a red line. The
blue lines represent mean values. The relative r.m.s.e. for all physical
quantities are less than 5 %. The employed deep learning models can
accurately predict the physical quantities.

3.3. Heterogeneous APTL porosity optimization for current density
uniformity

Fig. 10 shows the optimized APTL porosity distribution under the
objective of minimum current density uniformity index. Under an
average porosity of 0.5, the current density distribution of the optimized
cell is more uniform compared to that under the uniform porosity
configuration. The area with higher current density in the upper left
corner is greatly attenuated. It can also be noticed that the temperature
distribution of the electrolytic cell has also been improved considerably.
The voltage, energy consumption, temperature uniformity index and
current density uniformity index of the optimized electrolytic cell are
2.827 V, 6.768 kW h/m3, 0.00749, and 0.0128, respectively. Compared
to that under the uniform porosity configuration, reductions of 26.680
%, and 45.544 % in temperature uniformity index and current density
uniformity index are achieved, respectively.
At an average porosity of 0.3, oxygen accumulates under the bipolar

plates of the cell, resulting in a higher molar fraction of oxygen in the
diffusion layer. However, due to the better thermal conductivity of the
diffusion layer at lower porosity, the corresponding temperature dis-
tribution is more uniform. At an average porosity of 0.7, the local
temperature and current density of the electrolytic cell increase

Fig. 6. Comparison of the performances depending on porosity distributions; (a) voltage, (b) energy consumption, (c) temperature uniformity index U_T at the APTL-
flow field interface, (d) current density uniformity index U_I at the ACL-PEM interface.

Fig. 7. Randomly generated porosity distribution.
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dramatically, while the oxygenmole fraction in the diffusion layer is low
and uniformly distributed. This is due to the fact that the larger porosity
facilitates the timely discharge of oxygen and promotes the electro-
chemical reaction. Although the optimal APTL porosity distribution is
irregular, the porosity near the inlet side is larger while the porosity in
the upper left corner is smaller.
As depicted in Fig. 11, the voltage and energy consumption under the

optimal conditions decreases with increasing average APTL porosity.
The optimized temperature uniformity index increases with increasing
average porosity. However, it is worth mentioning that the optimal
current density uniformity of the electrolytic cell presents the smallest
value at an average porosity is 0.5. An increase in porosity facilitates the
diffusion of oxygen. However, it leads to a decrease in the conductivity
of the diffusion layer. The former promoting electrochemical reactions
while the latter inhibiting electron transfer. The comprise between these

two effects accounts for this phenomenon.

3.4. Heterogeneous APTL porosity optimization for temperature
uniformity

Figs. 12 and 13 show the optimal results with the temperature uni-
formity index as the optimization objective. The optimized voltage,
energy consumption, temperature uniformity index and current density
uniformity index are 2.835, 6.784, 0.00744, 0.0174, respectively, at an
average porosity of 0.5. Compared to that under the uniform porosity
configuration, reductions of 0.268%, 0.278%, 27.239 %, and 26.066%,
respectively are presented in voltage, energy consumption, temperature
uniformity index and current density uniformity index. With tempera-
ture uniformity improved, current density uniformity was sacrificed.
Compared to the results under the optimization for current density

Fig. 8. Comparison of the predicted and the CFD calculated physical fields.

Fig. 9. Relative r.m.s.e. of the energy consumption, voltage obtained via the full-connected neural network, and temperature uniformity index and current density
uniformity index obtained via the DeepONet.
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uniformity, the temperature uniformity improves by 0.696 % when the
temperature uniformity index is optimized, meanwhile the corre-
sponding current density uniformity is decreased by 35.780 %.
As shown in Figs. 10 and 12, it can be found that the optimal APTL

porosity distribution corresponding to the minimal temperature

uniformity is more irregular. It roughly conforms to the distribution
pattern of larger porosity near the entrance and smaller porosity in the
upper left corner. At an average porosity of 0.3, the cells have higher
local current density and temperature, leading to worsen uniformity,
due to the fact that a larger porosity corresponds to a smaller thermal

Fig. 10. Optimal porosity distribution and corresponding current density, oxygen mole fraction, and temperature distributions for different average APTL porosities
for minimizing current density uniformity index.

Fig. 11. Comparison of the performances depending on different average APTL porosities for minimizing current density uniformity index; (a) voltage, (b) energy
consumption E, (c) temperature uniformity index U_T at the APTL-flow field interface, (d) current density uniformity index U_I at the ACL-PEM interface.
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conductivity and electrical conductivity, which weakens the heat
transfer capacity and generates more Joule heat. The current density
distributions under average APTL porosities of 0.5 and 0.3 exhibit
similar trend, while the temperature distributions and oxygen mole
fraction distributions are more disparate. This is due to the fact that

smaller porosity has better thermal and electrical conductivity, while
larger porosity is more favorable for oxygen diffusion. The compromised
impacts account for this phenomenon. Unlike optimizing current density
uniformity, when temperature uniformity is the optimization objective,
a smaller APTL porosity is more appealing.

Fig. 12. Optimal porosity distribution and corresponding current density, oxygen mole fraction, and temperature distributions for different average APTL porosities
for minimizing temperature uniformity.

Fig. 13. Comparison of the performances depending on different average APTL porosities for minimizing temperature uniformity; (a) Voltage, (b) energy con-
sumption E, (c) temperature uniformity index U_T at the APTL-flow field interface, (d) current density uniformity index U_I at the ACL-PEM interface.
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4. Conclusions

In present study, a 3D non-isothermal model of PEMEC with parallel
flow fields is employed to investigate the impacts of the heterogeneous
APTL porosity distribution on the spatial internal current density and
temperature distribution uniformity and energy conversion perfor-
mance of the PEMEC. The APTL porosity has a limited effect on the
voltage and energy consumption of the PEMEC. However, it can
significantly impact the temperature and current density uniformity.
The employed deep learning models can accurately predict the distri-
bution of current density, temperature and oxygen mole fraction fields
and the performance metrics. In addition, the optimal APTL porosity
distributions corresponding to the minimum internal current density
and temperature distribution uniformity have been achieved, respec-
tively. In the optimal porosity distributions for minimum current density
and temperature distribution uniformity, the porosity near the inlet side
is large, while the porosity in the upper left corner is small. A smaller
average porosity leads to a lower temperature uniformity index, while a
larger average porosity renders lower energy consumption and better
mass transfer performance. Compared with the uniform porosity dis-
tribution, the current density and temperature uniformity are improved
by 45.544 % and 26.680 %, respectively, at an average APTL porosity of
0.5.
Present work provides an efficient way to obtain the desired spatial

heterogeneous APTL porosity distribution. The results can serve as a
guide for future experimental studies. Although the analysis is con-
ducted on PEMECs with parallel flow fields, the proposed method is
versatile and can be extended to cells featuring different flow field
structures, geometries, materials, and diverse operational conditions.
However, the present study is based on numerical simulations, including
CFD tests and DeepONet predictions, without corresponding experi-
mental validation. Future research should address this gap by priori-
tizing the experimental verification of the optimized porosity
distributions to enhance the validity and practical applicability. Addi-
tionally, the development of a cost-effective method for precise regu-
lation of porosity distribution is also challenging, which should be
addressed for the practical implementation of APTLs with spatial het-
erogeneous porosities in engineering applications.
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layers for optimal oxygen transport in water electrolyzers: combined stochastic
reconstruction and lattice Boltzmann method, Chem. Phys. Chem. 24 (2023)
e202300197.

[16] Y. Li, Z. Kang, X. Deng, G. Yang, S. Yu, J. Mo, D.A. Talley, G.K. Jennings, F.-
Y. Zhang, Wettability effects of thin titanium liquid/gas diffusion layers in proton
exchange membrane electrolyzer cells, Electrochim. Acta 298 (2019) 704–708.

[17] Y. Jiang, Y. Li, Y. Ding, S. Hu, J. Dang, F. Yang, M. Ouyang, Simulation and
experiment study on two-phase flow characteristics of proton exchange membrane
electrolysis cell, J. Power Sources 553 (2023) 232303.

[18] Z. Kang, J. Mo, G. Yang, Y. Li, D.A. Talley, B. Han, F.-Y. Zhang, Performance
modeling and current mapping of proton exchange membrane electrolyzer cells
with novel thin/tunable liquid/gas diffusion layers, Electrochim. Acta 255 (2017)
405–416.

[19] W. Wang, L. Ding, Z. Xie, S. Yu, C.B. Capuano, A. Keane, K. Ayers, F.Y. Zhang, 3D
structured liquid/gas diffusion layers with flow enhanced microchannels for proton
exchange membrane electrolyzers, Energy Convers. Manag. 296 (2023) 117665.

[20] T. Schuler, J.M. Ciccone, B. Krentscher, F. Marone, C. Peter, T.J. Schmidt, F.
N. Büchi, Hierarchically structured porous transport layers for polymer electrolyte
water electrolysis, Adv. Energy Mater. 10 (2019) 1903216.

[21] J.K. Lee, C. Lee, K.F. Fahy, P.J. Kim, J.M. LaManna, E. Baltic, D.L. Jacobson, D.
S. Hussey, S. Stiber, A.S. Gago, K.A. Friedrich, A. Bazylak, Spatially graded porous
transport layers for gas evolving electrochemical energy conversion: high
performance polymer electrolyte membrane electrolyzers, Energy Convers.
Manage. 226 (2020) 113545.

[22] Q. Li, C. Bao, Z. Jiang, X. Zhang, T. Ding, C. Fang, M. Ouyang, Numerical study on
oxygen transport pattern in porous transport layer of proton exchange membrane
electrolysis cells, eTransportation 15 (2023) 100210.

[23] H. Zhou, B. Chen, K. Meng, M. Luo, P. Li, Z. Tu, Combination effect of flow channel
configuration and anode GDL porosity on mass transfer and performance of PEM
water electrolyzers, Sustain. Energy Fuels 6 (2022) 3944–3960.

[24] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators, Nat. Mach.
Intell. 3 (2021) 218–229.

[25] S. Goswami, M. Yin, Y. Yu, G.E. Karniadakis, A physics-informed variational
DeepONet for predicting crack path in quasi-brittle materials, Comput. Methods
Appl. Mech. Eng. 391 (2022) 114587.

[26] A. Kumar, T. Echekki, Combustion chemistry acceleration with DeepONets, Fuel
365 (2024) 131212.

X. Yang et al.

http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0001
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0001
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0001
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0002
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0002
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0002
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0003
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0003
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0003
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0004
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0004
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0004
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0004
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0005
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0005
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0005
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0006
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0006
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0006
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0006
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0006
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0007
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0007
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0007
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0008
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0008
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0008
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0010
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0010
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0010
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0011
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0011
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0011
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0011
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0012
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0012
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0012
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0013
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0013
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0013
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0014
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0014
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0014
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0015
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0015
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0015
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0015
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0016
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0016
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0016
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0017
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0017
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0017
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0018
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0018
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0018
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0018
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0019
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0019
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0019
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0020
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0020
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0020
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0021
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0021
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0021
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0021
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0021
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0022
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0022
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0022
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0023
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0023
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0023
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0024
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0024
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0024
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0025
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0025
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0025
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0026
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0026


International Journal of Heat and Mass Transfer 233 (2024) 126019

12

[27] I. Sahin, C. Moya, A. Mollaali, G. Lin, G. Paniagua, Deep operator learning-based
surrogate models with uncertainty quantification for optimizing internal cooling
channel rib profiles, Int. J. Heat. Mass Transf. 219 (2024) 124813.

[28] Y. Yu, X.-Z. Yuan, H. Li, E. Gu, H. Wang, G. Wang, M. Pan, Current mapping of a
proton exchange membrane fuel cell with a segmented current collector during the
gas starvation and shutdown processes, Int. J. Hydrogen Energy 37 (2012)
15288–15300.

[29] Q. Wei, L. Fan, Z. Tu, Hydrogen production in a proton exchange membrane
electrolysis cell (PEMEC) with titanium meshes as flow distributors, Int. J.
Hydrogen Energy 48 (2023) 36271–36285.

[30] Y. Zhuang, P. Cui, R. Long, W. Liu, Z. Liu, Multi-objective optimization of channel
structure for a proton exchange membrane water electrolysis cell, Int. J. Hydrogen
Energy 49 (2024) 337–352.

[31] S. Srinivasan, Fuel Cells: From Fundamentals to Applications, Springer Science &
Business media, 2006.

[32] H. Vogt, R.J. Balzer, The bubble coverage of gas-evolving electrodes in stagnant
electrolytes, Electrochim. Acta 50 (2005) 2073–2079.

[33] H. Ju, H. Meng, C.-Y. Wang, A single-phase, non-isothermal model for PEM fuel
cells, Int. J. Heat. Mass Transf. 48 (2005) 1303–1315.

[34] H. Meng, B. Ruan, Numerical studies of cold-start phenomena in PEM fuel cells: a
review, Int. J. Energy Res. 35 (2011) 2–14.

[35] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model,
J. Electrochem. Soc. 138 (1991) 2334–2342.

[36] H. Ito, T. Maeda, A. Nakano, H. Takenaka, Properties of Nafion membranes under
PEM water electrolysis conditions, Int. J. Hydrogen Energy 36 (2011)
10527–10540.

[37] F. Aubras, J. Deseure, J.J.A. Kadjo, I. Dedigama, J. Majasan, B. Grondin-Perez, J.
P. Chabriat, D.J.L. Brett, Two-dimensional model of low-pressure PEM electrolyser:
two-phase flow regime, electrochemical modelling and experimental validation,
Int. J. Hydrogen Energy 42 (2017) 26203–26216.

[38] S. Toghyani, S. Fakhradini, E. Afshari, E. Baniasadi, M.Y. Abdollahzadeh
Jamalabadi, M. Safdari Shadloo, Optimization of operating parameters of a
polymer exchange membrane electrolyzer, Int. J. Hydrogen Energy 44 (2019)
6403–6414.

[39] H. Xiao, H. Guo, F. Ye, C. Ma, Numerical study of the dynamic response of heat and
mass transfer to operation mode switching of a unitized regenerative fuel cell,
Energies 9 (2016) 1015.

[40] Z. Zhan, J. Xiao, Y. Zhang, M. Pan, R. Yuan, Gas diffusion through differently
structured gas diffusion layers of PEM fuel cells, Int. J. Hydrogen Energy 32 (2007)
4443–4451.

[41] S. Toghyani, E. Afshari, E. Baniasadi, Metal foams as flow distributors in
comparison with serpentine and parallel flow fields in proton exchange membrane
electrolyzer cells, Electrochim. Acta 290 (2018) 506–519.

[42] Q. Chen, Y. Wang, F. Yang, H. Xu, Two-dimensional multi-physics modeling of
porous transport layer in polymer electrolyte membrane electrolyzer for water
splitting, Int. J. Hydrogen Energy 45 (2020) 32984–32994.

[43] U. Pasaogullari, C.-Y. Wang, Two-phase transport and the role of micro-porous
layer in polymer electrolyte fuel cells, Electrochim. Acta 49 (2004) 4359–4369.

[44] K. Broka, P. Ekdunge, Modelling the PEM fuel cell cathode, J. Appl. Electrochem.
27 (1997) 281–289.

[45] X.-G. Yang, Q. Ye, P. Cheng, Matching of water and temperature fields in proton
exchange membrane fuel cells with non-uniform distributions, Int. J. Hydrogen
Energy 36 (2011) 12524–12537.

[46] H. Park, Numerical simulations of a full-scale polymer electrolyte fuel cell with
analysing systematic performance in an automotive application, Energy Convers.
Manag. 103 (2015) 623–638.

[47] J. Breme, E. Eisenbarth, V. Biehl, Titanium and its alloys for medical applications.
Titanium and titanium alloys, 2005.

[48] L. Xing, X. Liu, T. Alaje, R. Kumar, M. Mamlouk, K. Scott, A two-phase flow and
non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel
cell, Energy 73 (2014) 618–634.

[49] B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids,
McGraw-Hill Professional, 2000.

[50] Y. Shan, S.-Y. Choe, S.-H. Choi, Unsteady 2D PEM fuel cell modeling for a stack
emphasizing thermal effects, J. Power Sources 165 (2007) 196–209.

[51] J.O. Majasan, J.I.S. Cho, I. Dedigama, D. Tsaoulidis, P. Shearing, D.J.L. Brett, Two-
phase flow behaviour and performance of polymer electrolyte membrane
electrolysers: electrochemical and optical characterisation, Int. J. Hydrogen Energy
43 (2018) 15659–15672.

[52] S. Toghyani, E. Afshari, E. Baniasadi, S.A. Atyabi, Thermal and electrochemical
analysis of different flow field patterns in a PEM electrolyzer, Electrochim. Acta
267 (2018) 234–245.

X. Yang et al.

http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0027
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0027
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0027
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0028
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0028
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0028
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0028
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0029
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0029
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0029
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0030
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0030
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0030
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0031
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0031
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0032
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0032
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0033
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0033
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0034
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0034
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0035
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0035
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0036
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0036
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0036
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0037
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0037
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0037
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0037
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0038
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0038
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0038
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0038
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0039
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0039
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0039
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0040
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0040
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0040
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0041
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0041
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0041
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0042
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0042
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0042
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0043
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0043
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0044
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0044
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0045
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0045
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0045
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0046
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0046
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0046
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0047
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0047
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0048
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0048
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0048
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0049
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0049
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0050
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0050
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0051
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0051
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0051
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0051
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0052
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0052
http://refhub.elsevier.com/S0017-9310(24)00849-4/sbref0052

	Deep learning assisted anode porous transport layer inverse design for proton exchange membrane water electrolysis
	1 Introduction
	2 Material and methods
	2.1 Physical model of the PEMEC
	2.1.1 Electrochemistry modeling
	2.1.2 Mass transfer modeling
	2.1.3 Heat transfer modeling
	2.1.4 Mesh independence check and model validation

	2.2 Deep learning

	3 Results and discussion
	3.1 Effects of spatial heterogeneous APTL porosity distribution
	3.2 Deep learning assisted physical field and performance metrics prediction
	3.3 Heterogeneous APTL porosity optimization for current density uniformity
	3.4 Heterogeneous APTL porosity optimization for temperature uniformity

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


