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A B S T R A C T

Compared to traditional inter-membrane spacers, profiled ion exchange membranes significantly improve the 
energy harvesting performance of reverse electrodialysis (RED). Here computational fluid dynamics is employed 
to generate data regarding the flow and mass transfer characteristics and performance index under different 
profiled membrane microstructures. Data-driven deep learning models are constructed for microstructure shape 
generation, physics field prediction, and performance forecasting. Results show that the microstructure shape 
generation via the Bezier generative adversarial network, the physical field prediction via conditional generative 
adversarial network for the velocity field and the performance prediction via multi-layer perceptron for power 
number and Sherwood number achieves satisfied accuracy, respectively. The gradient descent algorithm is 
utilized to optimize the microstructure shape achieving higher mass transfer performance and lower pump power 
consumption. Compared to the traditional straight ridge channel, the optimized microstructure channel exhibits 
a reduction of 18.85 % in the power number and an increase of 41.00 % in the Sherwood number, rendering 
significantly boosted performance.

1. Introduction

With the rapid growth of the global population, the energy demand is 
exponentially increasing. Regarding resource depletion and escalating 
climate crises, developing and utilizing renewable energy sources has 
become a crucial strategy all over the world [1]. Salinity gradient energy 
(SGE) is a kind of clean energy source originating from the electro
chemical potential difference between solutions of different salt con
centrations, with no thermal pollution or generation of harmful 
substances, also known as “blue energy” [2,3]. It is estimated that the 
energy available worldwide from the convergence of rivers and oceans is 
about 2.6 TW [4], accounting for approximately 20 % of global energy 
demand [5]. Additionally, industrial brine and high salinity household 
wastewater can also provide significant SGE sources [6,7]. Reverse 
electrodialysis (RED) is one of the most mature technologies for SGE 
harvesting, which directly converts SGE into electricity without inter
mediate energy conversion stages and exhibits high energy density and 
strong resistance to pollution [8]. Furthermore, RED is widely investi
gated and used in hydrogen production [9,10] and wastewater treat
ment [11,12].

Factors affecting the RED performance mainly are solution flow rate 

[13], temperature [14], multivalent ions [15], stack configuration [16], 
and membrane properties [17]. In the RED process, the concentration 
polarization phenomena exists (increased salt concentration at the 
membrane surface in the dilute channel and decreased salt concentra
tion at the membrane surface in the concentrate channel), which lowers 
voltage of the RED stack [18]. Flow channels can significantly influence 
RED performance. The most common channel is formed by the spacer 
with a net of filaments, which promotes flow mixing and reduces con
centration polarization [19]. Traditional spacers are made of 
non-conductive polymeric materials such as polyamide and poly
propylene, which increase the electrical resistance of channels and 
reduce the contact area between ion exchange membranes and solu
tions, leading to a “shadow effect” that negatively impacts RED perfor
mance [20]. Mehdizadeh et al. [21] investigated the RED stacks using 16 
different spacers with varying porosity and geometric shapes, demon
strating that the shadow effect significantly increases stack resistance. 
Długołęcki et al. [22] developed conductive RED spacers, which 
increased stack power density by 3–4 times than non-conductive 
spacers.

To overcome the limitations of traditional spacers, the concept of 
profiled ion exchange membranes has been proposed in recent years. 
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The “spacerless membranes”, feature customized microstructures such 
as ridges, waves, relief, and pillars are developed [23]. These micro
structures form grooves or protrusions with the membrane material and 
support the entire flow channel, eliminating the shadow effect caused by 
spacers and exhibiting excellent conductivity. Compared to traditional 
spacers, profiled membranes can significantly reduce hydraulic losses 
and ohmic resistance, effectively improving RED performance with 
higher economic feasibility and less sensitivity to fouling [24]. Vermaas 
et al. [25] applied profiled membranes with straight ridges to the RED 
stack. The profiled membranes exhibited lower permselectivity and 
ohmic resistance, which significantly reduced hydraulic friction and 
increased net power density. Güler et al. [26] investigated profiled anion 
exchange membranes with straight ridges, waves, and pillars, which 
were assembled on the low concentration side of the RED stack. Paw
lowski et al. [27] conducted CFD simulations of flow and mass transfer 
in different profiled membrane channels, revealing that the channel 
with integrated chevron structures achieved the largest power density 
under a compromise between mass transfer enhancement and pressure 
drop increase. Dong et al. [28] established a three-dimensional multi-
physical model for the RED cell pair and found that the wave-profiled 
membrane can enhance fluid mixing and ion transfer in channels.

The deep learning developed from neural networks was first pro
posed by Hinton et al., in 2006 [29], which is grounded by the universal 
approximation theorem [30]. As a popular branch of machine learning, 
the deep learning method has been widely adopted in performance 
prediction, optimization, and surrogate model building. Li et al. [31] 
adopted the deep learning method to investigate adiabatic film cooling 
effectiveness distribution with variable operating conditions and geo
metric layouts, and the prediction fields were in good agreement with 
the CFD results. Kang et al. [32] developed a deep learning model for 
three-dimensional transient mixed convection in a horizontal channel 
with a heated bottom surface, revealing that the conditional generative 
adversarial network yielded high clarity and accuracy in inferring 
temperature maps. Li et al. [33] proposed an interactive framework for 
hydrofoil design and optimization based on deep learning, which real
ized the mapping of hydrofoil design and operating parameters to hy
drodynamic performance parameters, and further completed effective 
optimization design of hydrofoils. Du et al. [34] employed the deep 
learning model to predict the physical fields and aerodynamic perfor
mance of turbine blades, and further optimized the turbine rotor blade 
profile with the gradient-based method.

Profiled ion exchange membranes overcome the limitations of 

traditional spacers and significantly improve the energy conversion 
generation performance of RED. Designing appropriate microstructures 
of the profiled ion exchange membranes can significantly upgrade the 
RED performance. In previous studies, only different basic shapes of 
microstructures have been investigated. The optimal derived variations 
of specific microstructures have not been revealed. In this paper, the 
performance of RED with straight ridge and various derived micro
structures is analyzed based on the CFD method. Data-driven deep 
learning models including microstructure shape generation network, 
physical field prediction network, and performance prediction network 
are established. The gradient descent algorithm is further employed to 
optimize the shape of the profiled membrane microstructure, achieving 
higher mass transfer performance and lower pump power consumption. 
The generalization model combining CFD and deep learning facilitates 
the optimization of RED, and this work may provide guidance for 
rationally developing and designing high-performance profiled 
membranes.

Fig. 1. A) Microstructure channel with the single-sided profiled membrane; B) Unit cell.

Fig. 2. A) Model dimensions; B) Microstructure profile.
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2. Materials and methods

2.1. CFD modelling

Here the RED microstructure channel with a single-sided profiled 
membrane is investigated. The overall structure of the channel is shown 
in Fig. 1A. The periodic unit of the channel (unit cell) [27,35] is simu
lated to avoid excessive computational requirements, as depicted in 
Fig. 1B with the main flow direction coinciding with the z-axis.

Referring to the typical application scope of most industrial mem
branes, a model aspect ratio is chosen as S/H = 4. The specific di
mensions of the unit cell are illustrated in Fig. 2A, where the channel 
height is H = 260 μm. A rectangular ridge with a height of h = 130 μm is 
pressed on the membrane to perturb the fluid flow, and the micro
structure width is s = 200 μm. As shown in Fig. 2B, originating from the 
straight ridge microstructure, various derived profile shapes of the 
microstructure are introduced. Four points are selected to generate the 
microstructure shape curves.

The flow within the periodic unit cell conforms to the three- 
dimensional steady-state continuity and momentum transport equa
tions [18]: 

∇
→ ⋅ u→=0 (1) 

ρ u→∇
→ ⋅ u→= − ∇

→p̃+ μ∇2 u→+ P→ (2) 

where u→ is the velocity (m⋅s− 1); ρ is the density (kg-m-3); μ is the dy
namic viscosity (Pa⋅s); p̃ denotes the periodic component of pressure 
(Pa), with spatial distribution periodically repeating in each unit cell; P→

is the body force per unit volume (N⋅m− 3), representing the large-scale 
component of the driving pressure gradient along the main flow 
direction.

The mass transfer equation can be obtained with the periodic 
transformation for electrolyte concentration based on the Stefan- 
Maxwell equation [18]: 

∇
→
(C̃ u→)= ∇

→
(D∇

→C̃) − Kcw (3) 

where D is the diffusion coefficient of the electrolyte (m2⋅s− 1); C̃ is the 
periodic component of ion concentration (mol⋅m− 3), with spatial dis
tribution periodically repeating in each unit cell; w is the velocity 
component along the main flow direction (m⋅s− 1); Kc is the large-scale 
concentration gradient along the main flow direction, i.e., dC/ dz 
(mol⋅m− 4) [18]: 

Kc =
JIEM⋅A
wave⋅V

(4) 

where A is the surface area of the ion exchange membrane (m2); V is the 
volume of the unit cell (m3); wave is the volume-averaged velocity along 
the main flow direction (m⋅s− 1); JIEM is the average flux of electrolyte 
entering the channel from the walls (mol⋅m− 2⋅s− 1).

The electrolyte flux can be calculated as [18]: 

JIEM = ±
0.5j
F

(5) 

where j is the current density (A⋅m− 2); F is the Faraday constant 
(C⋅mol− 1); the electrolyte flux is “+ ” when ions enter the channel and 
“ − ” when ions exit the channel.

The hydraulic diameter of the channel is twice the channel height 
[18]: 

dh =2H (6) 

The Reynolds number is calculated as [18]: 

Re=
ρwavedh

μ (7) 

The Fanning friction factor is defined as [18]: 

f =
Δp
Δz

dh

2ρwave
2 (8) 

where Δp/Δz is the average pressure gradient along the main flow di
rection (Pa⋅m− 1).

The pump power consumption is characterized by the dimensionless 
power number [18]: 

Pn=
Δp
Δz

wave
ρ2H4

μ3 =
1
8

fRe3 (9) 

The average mass transfer coefficient for the ion transport process is 
defined as [18]: 

k=
JIEM

Cw − Cb
(10) 

where Cw is the average wall concentration (mol⋅m− 3); Cb is the volume- 
averaged concentration (mol⋅m− 3).

The mass transfer characteristics of the channel are represented by 
the Sherwood number [18]: 

Sh=
kdh

D
(11) 

The fluid adopted here is NaCl aqueous solution with a concentration 
of 0.5 M, representative of typical seawater. The operating temperature 
of the solution is assumed to be 25 ◦C, and the corresponding physical 
properties are listed in Table 1 [35]. Periodic boundary conditions are 
imposed on the inlet and outlet surfaces perpendicular to the main flow 
direction, and the surfaces perpendicular to the y-axis are set as trans
lational periodicity boundaries. The profiled membrane and micro
structure surfaces are considered non-slip walls, and a negative 
electrolyte flux is imposed at the non-microstructured portion of the 
membrane surfaces to simulate ion efflux. Due to the concentration 
polarization at higher current densities, a high current density of i = 60 
A m− 2 is selected to analyze the mass transfer capability of the channel 
under extreme operating conditions. For different microstructure 
channels, the average pressure gradient is fixed as Δp/Δz = 5000 Pa m− 1 

to study the effect of variations in microstructure shape on the flow and 
mass transfer performance of the channel under lower Reynolds 
numbers (Re <4).

The geometric model is meshed multiple times to obtain eight sets of 
grids with quantities ranging from approximately 0.15 million to 2.8 
million, and the dimensionless power number and Sherwood number 
are calculated for different grid numbers. Fig. 3 presents the impact of 
grid numbers on Pn and Sh. As the grid number increases from 2.03 ×
106 to 2.80 × 106, the minimum change rates of 0.15 % for the 
dimensionless power number and 0.26 % for the Sherwood number 
occur, indicating that further grid refinement has little effect on simu
lation and the computed results are independent of the grid quantity. 
Therefore, a grid number of 2.03 × 106 is selected for CFD analysis.

The flow and mass transfer characteristics within the channel 
experimented by Li et al. [36] are calculated. The channel studied in the 
experiment is formed by a net spacer made of overlapped wires, with the 
ratio of spacer wire spacing to channel height as S/H = 4. The corre
sponding unit cell is depicted in Fig. 4, with the main flow direction 

Table 1 
Physical properties of NaCl aqueous solution [35].

Temperature 
(◦C)

Molarity 
(M)

Density 
(kg⋅m− 3)

Viscosity 
(Pa⋅s)

Diffusivity 
(m2⋅s− 1)

25 0.5 1017 9.31 × 10− 4 1.472 × 10− 9
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along the z-axis, which bisects the angle formed by the filaments. The 
working fluid adopted in the experiment is a mixed electrolyte solution, 
and relevant physical properties are listed in Table 2 [36].

As shown in Fig. 5, the dimensionless power number and Sherwood 
number obtained from the simulation are compared with experimental 
results as well as CFD results reported by Li et al. [36] and Gurreri et al. 
[35], indicating that the variations and values exhibit good consistency 

with experimental and CFD studies. Therefore, the numerical model 
employed in this paper can accurately simulate the flow and mass 
transfer processes.

2.2. Deep learning method

Here, three deep learning networks are constructed: (1) micro
structure shape generation network, which utilizes the Bezier generative 
adversarial network (Bezier-GAN) based on spline shape synthesis [37], 
enabling direct mapping from geometric parameters to microstructure 
profile; (2) physical field prediction network, which employs the con
ditional generative adversarial network (cGAN) based on U-net gener
ator [38], enabling mapping from microstructure profile to 
concentration and velocity fields; (3) performance prediction network, 
which adopted the multi-Layer perceptron (MLP) based on fully con
nected neural layers, enabling mapping from geometric parameters to 
dimensionless power number and Sherwood number.

2.2.1. Microstructure shape generation network
Bezier-GAN enables dimensionality reduction of curve data, gener

ating control points and further uniform, discrete smooth contour 
points. The network consists of a generator (G) and a discriminator (D), 
where the generator receives geometric parameters c and random noise 
z to generate fake curve samples, and the discriminator receives real 
samples or fake samples synthesized by the generator, learns to distin
guish between these data and predicts the probability that the sample is 
real. The detailed construction and expressions of the microstructure 
shape generation network can be seen in the Appendix.

The kernel maximum mean discrepancy (MMD) [39] is used to 
evaluate the approximation between the generated data distribution and 
the real data distribution, and assess the quality of synthesized curves: 

Fig. 3. Grid independence analysis.

Fig. 4. Overlapped spacer unit cell.

Table 2 
Physical properties of mixed electrolyte solution [36].

Temperature (◦C) Density (kg⋅m− 3) Viscosity (Pa⋅s) Diffusivity (m2⋅s− 1)

20 1034 0.9764 × 10− 6 7.260 × 10− 10

Fig. 5. Model validation.
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MMD2(Pdata,PG)=Exd ,xʹ
d∼Pdata ;xg ,xǵ∼PG

[
k
(
xd, xʹ

d
)
− 2k

(
xd, xg

)
+ k
(

xg, xʹ
g

)]

(12) 

where k(x, x́ ) = exp
(
− ‖x − x́ ‖

2
/
(
2σ2)) is a Gaussian kernel. A lower 

MMD indicates that the synthesized curves are more realistic.

2.2.2. Physical field prediction network
cGAN incorporates real labels as part of the features, thereby intro

ducing a conditional variable to guide and constrain the generator in 
synthesizing the desired tensor. The physical field prediction network 
employs the data-driven mode of cGAN, enabling one-to-one mapping 
from the microstructure profile to physical fields. The detailed con
struction and expressions of the physical field prediction network can be 
seen in the Appendix.

The absolute error between real and predicted data is defined as: 

Diff = |X − Xʹ| (13) 

where X and Xʹ are the real physical field data and the network pre
diction data, respectively.

The relative root mean square error (RMSE) is used to evaluate the 
performance of the physical field prediction network [38]: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(
xi − xʹ

i
)2

N

√ / ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1xi2

N

√

, xi ∈X, xʹ
i ∈ Xʹ (14) 

where xi and x́i are the data of the real physical field and the corre
sponding predicted field, respectively; N is the number of data points. A 
lower relative RMSE indicates that the predicted data are more realistic.

2.2.3. Performance prediction network
The performance prediction network is based on the architecture of 

MLP, receiving geometric parameters and predicting the power number 
and Sherwood number for the corresponding channel. The detailed 
construction and expressions of the performance prediction network can 
be seen in the Appendix.

The target relative error (TRE) is defined to evaluate the perfor
mance of the performance prediction network: 

TRE=

⃒
⃒ψm − ψʹ

m

⃒
⃒

ψm
(15) 

where ψm and ψ ḿ represent the real and predicted performance pa
rameters, respectively. A lower TRE indicates more accurate perfor
mance prediction.

2.2.4. Data preparation and preprocessing
The data-driven deep learning models require a large amount of 

high-confidence sample data as input. For the microstructure shape 
generation network, 660 sets of third-order Bezier curve data are 
randomly generated. The ratio of the training set to the validation set is 

10:1, where each data set contains two contour curves. Four points are 
uniformly taken along the microstructure shape curves, and corre
sponding z-axis relative coordinates are combined as the geometric 
parameters c (c1,c2,c3,c4). The Latin hypercube sampling method is used 
to sample geometric parameters within the design space, generating 600 
and 60 sets of parameters for training and validation, respectively. To 
avoid curve interference and exceeding the model boundaries in struc
tural design, the geometric parameters must satisfy certain constraints: 
{

0 < c1 < c3 < 1
0 < c2 < c4 < 1 (16) 

The geometric parameters are imported into the trained micro
structure shape generation network to synthesize microstructure pro
files. The profile data are modeled and simulated by the CFD method to 
obtain the flow and mass transfer characteristics under different chan
nels. The interpolation method is employed to extract the coordinate 
information, concentration C, and velocity in z-direction w on grid 
nodes, forming the real physical field with a size of 128 × 128 for 
training and validation of the physical field prediction network. The 
dimensionless power numbers and Sherwood numbers of different 
channels are calculated to train and validate the performance prediction 
network.

The data inputs of the deep learning models are all preprocessed by 
the Min-Max normalization method: 

datai =
datai − min (data)

max (data) − min (data)
(17) 

3. Results and discussion

3.1. Performance under the straight ridge channel

Fig. 6A illustrates the streamlines of the straight ridge channel on the 
x-z midplane parallel to the flow direction, where the normalized ve
locity in z-direction is represented as w/ wave. The streamlines enter the 
unit cell from the inlet, converge towards the upper wall due to the 
perturbation of the straight ridge, and then refill the entire channel after 
passing through the microstructure. At a lower Reynolds number, there 
are distinct stagnation regions at the intersection of the lower wall and 
the base of the straight ridge, with no evident diversion or vortex near 
the microstructure, and excellent symmetry is observed between the 
upstream and downstream streamlines. The fluid velocity increases first 
and then decreases as flow proceeds, attributed to the abrupt reduction 
in cross-sectional area as the fluid flows through the microstructure, 
which is more obvious in the domain away from the walls. Fig. 6B shows 
the velocity distribution of the channel on the y-z midplane parallel to 
the flow direction. Due to the geometric symmetry of the channel, the 
velocity contour on the midplane also exhibits excellent symmetry. The 
fluid velocity decreases first and then increases along the main flow 
direction, with step changes near the microstructure. The region with 
optimally developed flow shifts from the midplane towards the upper 

Fig. 6. A) Streamlines of the straight ridge channel on the x-z midplane; B) Normalized velocity distribution of the straight ridge channel on the y-z midplane.

L. Wang et al.                                                                                                                                                                                                                                   Energy 312 (2024) 133484 

5 



wall due to the obstruction of the microstructure, resulting in uniform 
velocity distribution and a maximal flow velocity away from the 
microstructure. However, the flow development near the microstructure 
gradually weakens, and even stagnation occurs on the microstructure 
surface.

Fig. 7 illustrates the concentration distributions of the straight ridge 
channel on the lower and upper walls, where the normalized concen
tration of the wall is defined as Cb/ Cw. The symmetry feature of the 
geometry also applies to the concentration field. For the lower wall, a 
maximal normalized concentration appears at the intersection of the 
straight ridge and the lower wall, indicating a strong concentration 
polarization near this area, while the mass transfer is better away from 
the straight ridge. Under the disturbance of the microstructure, there is a 
flow trend in the upstream region away from the lower wall and close to 
the upper wall, which leads to a gradual increase in the velocity 
component perpendicular to the main flow direction, and further 
weakens the mass transfer at the lower wall. Subsequently, the fluid 
refills the entire unit cell in the downstream region, resulting in a 

gradual increase in the velocity component along the main flow direc
tion and enhancing the mass transfer. For the upper wall, the mass 
transfer near the straight ridge is significantly better than in other areas. 
The upper wall is flushed by the fluid with a larger velocity component 
perpendicular to the main flow direction, resulting in a more thorough 
flow mixing, which is favorable for mass transfer. However, there is less 
mass transfer in the low-velocity areas near the inlet and outlet.

In the RED process, reducing the hydraulic loss and increasing the 
output power, are both anticipated, equivalent to achieving a lower 
dimensionless power number and a higher Sherwood number. Fig. 8
illustrates the performance of the unit cell with different microstruc
tures, where Case 1 represents the straight ridge and Cases 2 to 7 
represent six derived microstructures randomly generated. Upgraded 
performance can be observed under different microstructures. Therefore 
achieving the optimal microstructure channel is highly demanded.

3.2. Microstructure shape generation

The batch method is adopted for training the microstructure shape 
generation network, which can improve the training effect and enhance 
the generalization ability of the generated model, with a batch size of 80. 
Fig. 9 illustrates the comparison between the microstructure shape 
curves (discrete red points) generated by Bezier-GAN and the real 
samples (black lines), which shows that the synthesized curves closely 
match the real shapes. The kernel MMD of the network according to the 
validation set is 0.1151 ± 0.0020, indicating that the curves generated 
using geometric parameters can replace real curves for structural design.

3.3. Physical field prediction

The physical field cGAN is employed to predict the distributions of 
physical quantities that characterize the flow and mass transfer prop
erties of the channel, including the velocity field on the y-z midplane, as 

Fig. 7. Normalized concentration distribution of the straight ridge channel: A) The lower wall; B) The upper wall.

Fig. 8. Performance of different microstructure channels.

Fig. 9. Accuracy of the microstructure shape generation network. The black lines represent the real samples, and the discrete red points are generated by Bez
ier-GAN.
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Fig. 10. Accuracy of the physical field prediction networks: A) Normalized velocity field on the y-z midplane; B) Normalized concentration field on the lower wall; C) 
Normalized concentration field on the upper wall.
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well as the concentration fields on the lower and upper walls.
For the velocity field on the y-z midplane, the model has the lowest 

average relative RMSE of 2.104 % at the 3.8 × 105th training step, with a 
maximum outlier of 4.370 %. For the concentration field on the lower 
wall, the model has the lowest average relative RMSE of 1.093 % at the 
2.4 × 105th training step, with a maximum outlier of 3.447 %. For the 
concentration field on the upper wall, the model has the lowest average 
relative RMSE of 0.002 % at the 3.2 × 105th training step, with a 
maximum outlier of 0.007 %. Fig. 10 presents the comparison between 
the real and predicted physical fields for different channels, indicating 
higher prediction accuracy of the models. The relative errors mainly 
concentrate around the edges of the microstructure, attributing to fewer 
data points and obvious numerical discontinuity near the microstruc
ture. Therefore, the predicted physical fields can replace real physical 
fields for flow and mass transfer performance analysis.

3.4. Performance prediction

The batch gradient descent method is employed to update MLP 
network parameters and weights. Fig. 11 demonstrates the comparison 
between the predicted and real performance parameters according to 
the validation set. The average TRE for the dimensionless power number 
is 0.402 % with a maximum outlier of 1.207 %, and the average TRE for 
the Sherwood number is 2.257 % with a maximum outlier of 5.591 %. 
Additionally, the relative errors of most samples are lower than 2.5 %. 
Overall, the prediction accuracy is satisfying.

3.5. Microstructure optimization

The shape of the microstructure impacts the flow and mass transfer 
characteristics therefore the energy conversion performance. Under the 

Fig. 10. (continued).

Fig. 11. Validation of the performance prediction network.
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automatic differentiation function of the deep learning model [40], the 
gradient-based method is adopted to optimize the structural parameters. 
As higher mass transfer performance and lower pump power 

consumption are demanded, the ratio of the Sherwood number and the 
dimensionless power number is employed as the objective function: 

K=
Sh
Pn

(18) 

The differential expression of the objective function with the struc
tural parameters is constructed as: 

∇K=

[
∂K
∂c1

,
∂K
∂c2

,
∂K
∂c3

,
∂K
∂c4

]T

(19) 

Here, the geometric parameters (c1, c2, c3, c4) of the microstructure 
are design variables, and 3000 optimizations are performed with 
different random initial values to avoid the problem of local optima. The 
optimal values of c, Pn, Sh, and K are (0.1389, 0.3443, 0.6278, 0.8733), 
251.50, 9.32, and 0.037, respectively. Fig. 12 illustrates the search 
processes for the largest K with five different initial values. The same 
results are obtained within 200 iterations. The abrupt changes of K are 
due to the penalty term imposed on the intermediate variables that do 
not satisfy the conditions of Eq. (16), ensuring that the optimization is 
carried out under the constraints within the design space.

The flow and mass transfer characteristics under the straight ridge 
channel and the optimal microstructure channel are compared in 
Table 3. The optimal microstructure significantly improves the mass 
transfer performance and reduces the hydraulic loss. Fig. 13 illustrates 
the real and predicted physical fields as well as the error distribution of 
the optimal microstructure channel. The optimized microstructure has a 
geometric symmetry, rendering an improved flow field and lowered 
pump power consumption. Relatively uniform concentration distribu
tions are formed on the upper and lower channel walls. The average 

Fig. 12. Optimization search processes with different initial values.

Table 3 
Performance of the straight ridge and the optimal microstructure channels.

Straight ridge channel Optimal microstructure Relative change

Pn 309.91 251.50 − 18.85 %
Sh 6.61 9.32 +41.00 %
K 0.021 0.037 +76.19 %

Fig. 13. Prediction field of the optimized microstructure channel: A) Normalized velocity field on the y-z midplane; B) Normalized concentration field on the lower 
wall; C) Normalized concentration field on the upper wall.
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normalized concentration on the walls is lower than that of the straight 
ridge channel, resulting in upgraded mass transfer performance.

4. Conclusions

In the present study, computational fluid dynamics is employed to 
generate data regarding the flow and mass transfer characteristics under 
different profiled membrane microstructures. Data-driven deep learning 
models are constructed for microstructure shape generation, physics 
field prediction, and performance forecasting. The main conclusions are. 

(1) Under the disturbance of the microstructure, strong concentra
tion polarization occurs at the intersection of the straight ridge 
and the lower wall, while mass transfer near the straight ridge on 
the upper wall is observed.

(2) The microstructure shape geometries can be can accurately 
generated via the Bezier generative adversarial network. The 
physical field prediction networks successfully predict the ve
locity field on the y-z midplane and the concentration fields on 
the lower and upper walls based on the microstructure profile, 
with average relative RMSEs of 2.104 %, 1.093 %, and 0.002 %, 
respectively. The performance prediction network presents an 
average TRE of 0.402 % for the dimensionless power number and 
2.257 % for the Sherwood number.

(3) The optimization for the microstructure shape is performed based 
on the gradient descent algorithm. Compared to the straight ridge 
channel, the optimized microstructure channel exhibits a reduc
tion of 18.85 % in the power number and an increase of 41.00 % 
in the Sherwood number.
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Appendix 

A1 Microstructure shape generation network

The generator of Bezier-GAN contains an input layer, a middle layer, and a Bezier layer. The input layer converts the two-dimensional feature 
tensor into a three-dimensional tensor or parameter variables through fully connected operations. The middle layer adjusts the tensor size through 
deconvolution and convolution operations to generate curve control points and corresponding weights. The Bezier layer utilizes control points, 
weights, and parameter variables to compute curve data into a discrete form as shown in Eq. (A1) [37]. The discriminator consists of a preprocessing 
layer, a convolutional layer, and an output layer. The preprocessing layer transforms sample data into a three-dimensional tensor. The convolutional 
layer adjusts the tensor size and extracts the sample information. The output layer maps the feature tensor to an authenticity probability through fully 
connected operations. 

xi =

∑m
j=0

(
m
j

)

t
j

i
(1 − ti)m− jPjwj

∑m
j=0

(
m
j

)

t
j

i
(1 − ti)m− jwj

, i=0,…, n (A1) 

where xi represents the data point on the synthesized curve; m is the Bezier degree; Pj is the control point; wj is the corresponding weight; ti is the 
parameter variable satisfying 0 = t0 < ti− 1 < ti < tn = 1, which can be obtained by generating the interval variable δi = ti − ti− 1 through a softmax 
activation and then computing the cumulative sum of δi.

Backpropagation is adopted to update the model parameters during network training, and the Bernstein polynomial is computed via natural 
logarithm to enhance the stability of numerical training [37]: 

Bm
j (t) =

(m
j

)

tj(1 − t)m− j
= exp(log Γ(m + 1) − log Γ(j + 1)−

log Γ(m − j + 1) + j log t + (m − j)log(1 − t))
(A2) 

The generator of Bezier-GAN takes geometric parameters as additional inputs and achieves accurate mapping by maximizing the mutual infor
mation I(c;G(c, z)) between geometric parameters and the generated samples, introducing a regularization constraint as follows [37]: 

LI(G,Q)= Ex∼PG

[
Ecʹ∼P(c|x)[log Q(ć |x)]

]
+ H(c) (A3) 

where Q is the auxiliary distribution approximating P(c|x); H(c) is the entropy of geometric parameters.
Therefore, the loss function for Bezier-GAN can be expressed as [37]: 

min
G,Q

max
D

Ex∼Pdata [log D(x)] + Ec∼Pc ,z∼Pz [log(1 − D(G(c, z)))] − LI(G,Q) (A4) 
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A2 Physical field prediction network

The generator of the physical field prediction network is based on the U-net model with skip connections and a symmetric network architecture, 
which is beneficial for achieving good prediction performance on limited data [41]. The generator consists of an input layer, a downsampling layer, an 
upsampling layer, and an output layer. The input layer maps the microstructure profile tensor to the hidden layer size through a convolution 
operation. The downsampling layer extracts tensor features through six contracting blocks, and each contracting block performs two convolution 
operations followed by a max pool operation. The upsampling layer passes tensor features through six expanding blocks, and each expanding block 
executes upsampling, tensor cropping, skip connection, and three convolution operations. The output layer outputs the physical field tensor through a 
convolution operation.

The discriminator of the physical field prediction network receives a combined tensor of the microstructure profile and the physical field, 
outputting a matrix containing discriminative information. The discriminator consists of an input layer, a downsampling layer, and an output layer. 
The input layer maps the input tensor to the hidden layer size through a convolutional operation. The downsampling layer identifies tensor features 
through four contracting blocks, and each contracting block performs two convolution operations followed by a max pool operation. The output layer 
outputs a discriminative matrix through a convolution operation.

In order to prevent the vanishing gradient problem and enhance the training stability of the physical field prediction network, the Wasserstein loss 
i.e. W loss is adopted [42]. The W loss defines the Earth-Mover (EM) distance to evaluate the approximation between two distributions [38]: 

l a =
1
B
∑B

i=1
D(Ii,Oi) −

1
B
∑B

i=1
D(Ii,Oi

ʹ) (A5) 

where B is the batch size; I represents the microstructure profile; O represents the physical field; D(Ii,Oi) and D(Ii,Oi
ʹ) are the output matrixes from the 

discriminator for recognizing real and fake samples, respectively.
For training the generator, the L1 norm is introduced to improve model prediction performance [43]: 

l r =
1
B
∑B

i=1
|Oi

ʹ − Oi| (A6) 

The Lipschitz continuity of the weights matrix in the discriminator is crucial for training convergence [42]. The gradient penalty method in
troduces a regularization term into the loss function and imposes a weight restriction when the discriminator gradient norm exceeds one, enforcing the 
discriminator to be Lipschitz continuous. The gradient penalty term for the physical field prediction network is calculated as follows [38]: 

℘p =
1
B
∑B

i=1
(‖∇D(Ii,Oi

ʹ́ )‖2 − 1)2 (A7) 

where Oi
ʹ́  is a combination of real and synthesized samples [38]: 

Oi
ʹ́ = εiOi + (1 − εi)Oi

ʹ (A8) 

where εi is a random number from a uniform distribution on the interval of [0,1).
Therefore, the loss function for the physical field prediction network can be expressed as [38]: 

min
G

max
D

[
l a + λr l r + λp℘p

]
(A9) 

where λr is a coefficient of the L1 norm; λp is a coefficient of the gradient penalty regularization.
The adaptive moment estimation (ADAM) algorithm [44] is used to train the network, and the learning rate is adjusted by the cosine anneal 

method: 

ηc = ηmin +
1
2
(ηmax − ηmin)

(

1+ cos

(
stepc

stepf
π
))

(A10) 

where stepc and stepf are the current step and the final step, respectively; ηc is the learning rate at the current step; ηmax is the initial learning rate; ηmin 
is the termination learning rate.

A3 Performance prediction network

The performance prediction network consists of an input layer, a hidden layer, and an output layer. The input layer gets the training data, the 
hidden layer extracts tensor features through fully connected operations, and the output layer outputs the target parameters through a fully connected 
operation. The back-propagation is performed in network training to update neuron weights, minimizing the error between predicted data and real 
data. To prevent overfitting behavior and improve the generalization capability of the model, the mean square error is used as the loss function: 

min
1
n
∑n

i=1

(
yi − yʹ

i
)2 (A11) 

where yi and ýi represent the real and predicted data, respectively.
The exponential decay method is employed to adjust the learning rate: 
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ηc = ηmaxrd

(
stepc
stepd

)

(A12) 

where rd is the decay rate; stepd is the decay speed.
A4 The training of physical field prediction networks

The mini-batch method is adopted in training physical field prediction networks, and Fig.A1 illustrates the training losses of the generator and 
discriminator for each network. Backpropagation is performed to update the parameters of the generator and discriminator one time per step, and the 
physical field prediction networks converge well.

Fig. A1. Training losses for the physical field prediction networks: A) Normalized velocity field on the y-z midplane; B) Normalized concentration field on the lower 
wall; C) Normalized concentration field on the upper wall.

Data availability

Data will be made available on request. 
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