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A B S T R A C T

Pin-fin heat sinks are widely employed to dissipate heat from power devices under natural convection conditions.
To improve heat dissipation performance, optimization of the fin height distribution was conducted in this study.
In order to enhance optimization efficiency, we propose a dynamic surrogate model that integrates machine
learning, iteratively sampling and training until the convergence criterion is met. Compared with traditional
surrogate models, the dynamic surrogate model significantly reduces the prediction error of the optimal result,
proving more efficient and yielding superior outcomes with fewer samples. By optimizing the fin height distri-
bution, the heat sink thermal resistance was minimized without increasing mass. Subsequently, an experimental
bench was developed to compare the heat sink’s total thermal resistance pre- and post-optimization under
natural convection conditions. Experimental results demonstrate that within the input heat flux range of q =

500–1200 W/m2, the optimized heat sink’s total thermal resistance is diminished by 6.08% to 8.01%, without
any mass increment, which confirms the dynamic surrogate model’s efficacy in natural convection scenarios.
This study elucidates the design principles governing the height distribution of pin-fins of heat sinks under
natural convection, and provides a significant insight for guiding the design of pin-fin heat sinks.

1. Introduction

For most power devices, maintaining the proper operating temper-
ature range via effective thermal management is essential to ensure
efficient operation [1–4]. In terms of thermal management, two primary
heat transfer methods exist: active and passive, both aiming to remove
undesirable heat [5]. Compared with active heat dissipation, passive
methods do not require an external energy supply. Taking natural con-
vection cooling as an example, this approach facilitates heat dissipation
through thermal radiation and fluid convection resulting from buoyancy
effects caused by temperature differences [6]. It is evident that passive
heat dissipation technology is not only relatively environmentally
friendly [7] but also boasts lower noise and smaller failure rates [3],
albeit with a comparatively limited heat transfer capacity [8]. To
enhance the heat transfer coefficient (HTC) of passive heat dissipation
technology, optimizing the design of heat transfer elements is essential.

Convection heat sinks with fins are widely utilized in thermal man-
agement applications. Compared with forced convection, optimizing
heat transfer in natural convection heat sinks proves more challenging
due to their lower heat transfer intensity and the absence of a power

source, necessitating a substantial reduction in convection resistance to
enhance heat transfer performance [9–12]. Haghighi et al. [13] inves-
tigated the thermal performance of plate-fin and pin-fin heat sinks under
natural convection and found that the latter exhibited lower thermal
resistance, improving thermal performance by 10% to 41.6% compared
with the former. Sertkaya et al. [14] also stated that, under conditions of
natural convection, pin-fin heat sinks are not only lighter than plate-fin
heat sinks but also enhance convective heat transfer. Consequently, the
pin-fin heat sink was selected for the study to optimize the structure of
the pin-fins with the objective of improving the natural convection heat
dissipation performance.

Natural convection can be enhanced through three primary mecha-
nisms: enhancing the convection coefficient, expanding the heat transfer
surface area, and amplifying the temperature difference between the
heat transfer medium and the surrounding environment. However, in
practical applications, enhancing heat transfer proves to be much more
complicated. Researchers have employed various optimization strate-
gies to enhance the heat dissipation capabilities of heat sinks. In inves-
tigating innovative fin designs, Sung et al. [15] strengthened the
chimney effect by affixing aluminum tape to a pin-fin heat sink, thereby
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enhancing heat transfer and reducing thermal resistance by 17.1%. Kim
et al. [16] conducted an experimental analysis on the thermal perfor-
mance of heat sinks with branched pin-fins, discovering a 20% lower
thermal resistance relative to the conventional pin-fin heat sink. Serkan
Saahin et al. [17] examined flow and heat transfer characteristics of
integrated pin fin‑aluminum foam heat sinks, and analyzed various
configurations to identify the relatively optimal design by numerical
simulation. Sertkaya et al. [14] and Ahmadian-Elmi et al. [18] studied
the effects of the size, shape, height, spacing of pin-fins, and placement
angle of the heat sink on the heat dissipation ability under natural
convection through numerical simulation and experiment. Researchers
have also delved into non-uniform fin distribution designs; Bhandari
et al. [19] examined the thermal performance of vertically-oriented pin-
fin heat sinks with fin densities that varied along the flow direction
under natural convection, revealing that heat sinks with fin densities
decreasing along the flow direction exhibited an 11% reduction in
thermal resistance and a 30% weight reduction when compared to heat
sinks with uniformly distributed fins. Furthermore, studies by Huang
et al. [10] and Jang et al. [11] demonstrated that heat sink’s thermal
resistance is lower when the height of the central area differs from that
of the peripheral pin-fins. Baldry et al. [12] also observed that, with the
central region’s pin-fins at zero height, the temperature of the heat sink
substrate was 1.1 K lower than that of a uniform height design.

The aforementioned studies indicate that, to enhance natural con-
vection, numerous scholars utilize Computational Fluid Dynamics (CFD)
simulations in conjunction with experiments to refine the heat sink
structure. However, due to the inherent constraints of the test scope,
considerable potential for optimization remains in the final design.
Consequently, it is imperative to explore the pin-fin’s optimal design
using optimization algorithms to enhance both the thermal and hy-
draulic efficiencies of the heat sink [20–23]. Commonly utilized intel-
ligent algorithms comprise the genetic algorithm (GA) [24–26], particle
swarm optimization (PSO) [27], and simulated annealing (SA) [28]. The
efficacy of these applications relies heavily on the reliability of the
mathematical models that delineate the relationship between design
variables and performance. Given the complexity of heat transfer opti-
mization challenges and the constraints of computational resources,
devising precise mathematical models for performance prediction con-
stitutes a critical bottleneck in applying optimization algorithms. Sur-
rogate models are mathematical formulations that approximate the
relationship between input and output variables. Utilizing these surro-
gate models, resource-intensive CFD simulations can be substituted with
rapid and cost-effective mathematical computations. Common surrogate
models used in optimization include response surface models (RSM)
[29], artificial neural network models (ANN) [30,31], Kriging model
(KRG) [32], decision tree [33], and support vector regression models
(SVR) [34]. Das et al. [35] applied Taguchi method and response surface
methodology (RSM) for parametric optimization of natural convection
heat transfer inside a triangular porous enclosure with in-line rectan-
gular finned array to obtain the optimal combination of design param-
eters for maximum Nussle number. Shaeri et al. [36] devised a machine-
learning-based model utilizing ANN and a greedy search algorithm to
optimize the air-cooled plate-fin heat sink under laminar flow across a
broad spectrum of design parameters. Gupta et al. [37] conducted a
multi-objective optimization of an air-cooled perforated micro-pin-fin
heat sink using an ANN surrogate model in tandem with the non-
dominated sorting genetic algorithm (NSGA-II). Finally, the heat
transfer performance was enhanced by 11.5% to 39.8%. Nguyen et al.
[38] optimized the pin-fin geometry using a genetic algorithm inte-
grated with machine learning and CFD simulation, resulting in a funnel-
shaped design with a narrow top and wide base. Compared to conven-
tional cylindrical pin-fins, the HTC of this heat sink increased by 20%
without any detriment to hydraulic performance. In addition, recent
years have seen the application of novel surrogate models in enhancing
the performance of heat exchange equipment, such as convolutional
neural networks (CNN) [39] and multimodal machine learning (MMML)

[33]. Yang et al. [39] employed a pix2pix neural network, which con-
sists of two adversarial CNN, to regress the thermal fluid information of
pin-fin channels and used genetic algorithms for structural optimization
of the fins.

The enhancement of optimization models contributes to improved
prediction accuracy; however, the aforementioned models are all
trained and generated based on a consistent dataset. This approach lacks
the accuracy characteristics inherent to CFD simulations. Consequently,
although these optimization methods boast high optimization efficiency
and accuracy, their limitations become evident when confronted with
the pronounced nonlinearity inherent in heat transfer optimization
problems: (1)Due to the uncertainty regarding the location of the
optimal design points, the majority of research endeavors prioritize
global accuracy by employing uniform sampling. However, this sam-
pling strategy results in sparse sampling around the optimal design
points, inevitably compromising the fitting precision in these critical
areas. This, in turn, leads to a discrepancy between the predicted and
actual optimal designs. (2) During the construction of the traditional
surrogate model, the absence of a uniform standard fails to clarify the
necessary sample capacity needed for a specific optimization problem.
In light of the aforementioned deficiencies, we plan to dynamically
introduce additional sampling points in the vicinity of the optimal
design points. This strategy aims to continuously refine the model’s
precision near these crucial areas while maintaining overall accuracy,
thereby ensuring that the predicted optimal design converges ever closer
to the actual optimal design. To improve the reliability of the optimi-
zation algorithm, Shi et al. [40–42] raised a dynamic surrogate model
that marries the high computational precision of the CFD method with
the rapid optimization capabilities of the traditional surrogate model.

Aiming to bolster natural convection and enhance the thermal per-
formance of the heat sink, a dynamic agent model with constraints was
developed in this study, which marries the high computational precision
of the CFD calculations with the rapid optimization capabilities of the
traditional surrogate model. The height distribution of pin-fins is opti-
mized without increase in the mass of the heat sink. Through the anal-
ysis and comparison of gas velocity and heat sink surface temperature
distributions before and after optimization, simulation results eluci-
dated the mechanisms underlying the heat sink’s enhanced perfor-
mance. Subsequently, a test platform was established to evaluate the
heat sink’s heat dissipation efficiency under natural convection condi-
tions, and the experimental results confirmed the dynamic surrogate
model’s efficacy in the realm of natural convection. The approach pro-
posed herein equips engineers with a strategy to curtail superfluous
time-intensive tasks and boost optimization efficiency.

2. Computational model and numerical method

2.1. Physical description of the problem

The structure of the pin-fin natural convection heat sink studied in
this paper is shown in Fig. 1. The heat sink is placed horizontally and is
composed of a substrate and pin-fins with a square section. The side
length of the substrate is 2B = 120 mm, the thickness is t = 2 mm, the
side length of a single pin-fin is d= 4 mm, the initial heightH0= 50mm,
and the number of pin-fins is N = 100. The transverse and longitudinal
spacing between the fin is s = 8 mm, and the distance between the fin
and the edge of the substrate is da= 4 mm. The heat source is attached to
the bottom of the substrate, and the heat is finally dispersed into the air
through fins. Due to structural symmetry, a quarter of the heat sink is
selected as the calculation model. The calculation domain model is
shown in Fig. 1 (d). The air domain is continuously expanded until the
influence of the air domain boundary on the flow near the heat sink can
be eliminated. Finally, the length, width, and height of the air domain
can be determined as 2.5B × 2.5B × 6H0, respectively.

Natural convection has no power source and is only promoted by the
buoyancy generated by the temperature difference. Therefore, the
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pressure inlet boundary is set around and on the bottom of the calcu-
lation domain, and the pressure outlet is on the top of the calculation
domain, with atmospheric pressure P0 = 1.01325 × 105 Pa and ambient
temperature Tamb = 300 K. On the solid side at the bottom of the heat
sink, which serves as the heat source surface, an input heat flux of q =

700 W/m2 is applied. The air side is designated as adiabatic, ensuring
there is no heat loss from the back of the heat source. The remaining
contact surfaces between the heat sink and the air constitute the fluid-
solid interface.

2.2. Mathematical formulation and solution methods

By calculating Grashof number (Gr), natural convection in the
calculation domain is steady-state laminar flow. Under the input power
studied in this research, the temperature rise of the heat sink is small.
The following reasonable assumptions can be used to simplify the gov-
erning equation:

(1) The physical properties except for density of the fluid domain are
considered to be fixed;

(2) The solid domain material is uniformly isotropic, and the physical
properties are also fixed;

(3) The acceleration of gravity is downward vertically along the
negative Y-axis, and the value is g = 9.8 m2/s;

(4) The pin-fins are molded integrally with the substrate ignoring
contact thermal resistance.

For the fluid’s density, Boussinesq approximation is adopted, that is,

the density in the volume force term of the momentum equation is
considered to change linearly. The calculation formula is as follows:

ρ = ρ0-βqρ0ΔT (1)

where βq is the coefficient of thermal expansion, ρ0 is the density of air at
ambient temperature (Tamb), and ΔT represents the difference between
the actual air temperature and Tamb. All the densities of the remaining
governing equations are considered to be constant, and the simplified
control equations are as follow:

Fluid domain:

ρ0
(

∂u
∂x+

∂v
∂y+

∂w
∂z

)

= 0 (2)

ρ0
(

∂(u2)
∂x +

∂(uv)
∂y +

∂(uw)
∂z

)

= −
∂P
∂x+ μ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)

(3)

ρ0
(

∂(uv)
∂x +

∂(v2)
∂y +

∂(vw)
∂z

)

= −
∂P
∂y+ μ

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)

+ g(ρ − ρ0)

(4)

ρ0
(

∂(uw)
∂x +

∂(wv)
∂y +

∂(w2)

∂z

)

= −
∂P
∂z+ μ

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)

(5)

ρ0
(

∂(uT)
∂x +

∂(vT)
∂y +

∂(wT)
∂z

)

=
k
cp

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)

(6)

where u, v, and w represent the components of the gas velocity in the x,

Fig. 1. Physical model and computational domain schematic of the pin fin heat sink: (a) three-dimensional view, (b) front view, (c) top view, and (d) computational
domain and boundary conditions.
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y, and z directions, respectively; P denotes the local pressure; T indicates
the local temperature; and μ, k and cp are the viscosity, thermal con-
ductivity, and specific heat at constant pressure of the gas, respectively.

Solid domains:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 = 0 (7)

The numerical computation in this study utilizes the ANSYS Fluent,
and employs the finite volume method to discretize and solve the
computational domain. The radiation model is based on Surface to
Surface model (S2S), and the momentum term as well as the energy term
are discretized using a second order upwind approach. The pressure-
velocity coupling is performed using the SIMPLE algorithm. The
convergence criteria have been set at 10− 6 for the continuity and ve-
locity residuals, and 10− 8 for the energy residuals.

The input power Qin and heating surface temperature distribution
can be obtained by numerical simulation methods or experimental
measurements. Based on the average temperature of the heat source
surface Th, the total thermal resistance Rh of the heat sink can be
calculated as:

Rh =
Th − Tamb

Qin
(8)

2.3. Grid independence and model validation

In this study, a hexahedral structured mesh is used to partition the
computational domain, with the mesh schematic diagram depicted in
Fig. 2. The mesh is appropriately encrypted in the region of large ve-
locity and temperature gradients near the contact surface between the
fluid domain and the solid domain. A non-isometric structure is
randomly generated to control the number of structural mesh nodes to
generate different numbers of mesh systems. The total thermal resis-
tance of the pin-fin is used as an index to verify the mesh independence,
with the results shown in Table 1. It is found that when the mesh exceeds
4.36 million, the average change in total thermal resistance is no >1%.
Hence it can be considered that the mesh system with 4.36 million mesh
satisfies the calculation requirements.

Elenbaas [43] investigated the natural convection in a vertical

channel between isothermal flat plates and obtained an empirical cor-
relation for natural convection at a spacing of s and a height of H, as
shown in Eq. (9). In order to avoid the prediction error associated with
Eq. (9) when the value of s/H tends to 0, Bar-Cohen and Rohsenow [44]
further obtained an empirical equation with a wider range of applica-
bility, such as Eq. (10), where C1 = 576 and C2 = 5.87. In order to
validate the correctness of the simulation of natural convection, nu-
merical simulations of the natural convection in the vertical channel
were established, and the results obtained are compared with the two
empirical equations, as shown in Fig. 3. The comparison shows that the
error between the results from numerical simulation and empirical
correlations is small, which proves that the simulation method is
reliable.

Nus =
1
24
Ras

( s
H

){

1 − exp
[

−
35

Ras(s/H)

]}3/4

(9)

Nus =

[
C1

(Rass/H)2
+

C2

(Rass/H)1/2

]− 1/2

(10)

where Nu and Ra represent the Nusselt number and Rayleigh number,
respectively, and the subscript ‘s’ denotes the solid phase.

3. Optimization method and procedure

3.1. The optimization problem description

This research focuses on how the height distribution of the pin-fins
impacts the heat transfer performance of a natural convection heat
sink. In the numerical model, pin-fin height values are organized into a
height matrix, as depicted in Fig. 4. Given the symmetrical arrangement
of the pin-fins, the optimization algorithm asserts that hij = hji, thereby
reducing the height matrix to an upper triangular matrix comprising
fifteen elements. These elements serve as design variables in the pursuit
of optimizing the natural convection total thermal resistance. The pur-
suit of a lightweight design is a longstanding objective in the

Fig. 2. Computational domain grid: (a) front view, (b) top view, and (c) local
mesh view.

Table 1
Grid Independence Test.

Number of grids Total thermal resistance Inaccuracy

1,529,481 1.6369 –
4,367,481 1.6101 1.637%
7,198,521 1.6079 0.137%

Fig. 3. Comparison of experimental and simulation results.
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development of natural convection heat sinks. Consequently, to facili-
tate a meaningful comparison, this study imposes a constraint on the
total mass of the heat sink, overseeing that the optimal heat transfer
performance is achieved without surpassing the initial design’s weight.
With all other structural parameters held constant, the height of the pin-
fins is singled out as the sole design variable. Thus, framing the opti-
mization challenge addressed in this research as follows:

Optimization objective: J = Rh;
Design variables: hij (i, j = 1, 2, …, 5);
Variables range: hij∈[20, 80];
Constraints: ΔM = Mini -M ≥ 0;
where Mini is the total mass of the initial isometric pin-fin heat sink,

Mini = 25ρs × H0 × da2 + ρs × (2B)2 × t. And ρs presents solid density.

3.2. Dynamic surrogate model under constraints

Dynamic surrogate model provides a strategy to guide the surrogate
model to optimize an unknown black-box function effectively. It oper-
ates according to a two-step process: Initially, the surrogate is con-
structed using a small select group of sample points, followed by
iterative updates through machine learning until the best value is no
longer improved. Compared with a traditional surrogate model, the
dynamic surrogate model can obtain the desired result with fewer
samples and enhance the optimization efficiency. Moreover, continuous
exploration can assist in identifying neglected local features and mini-
mizing the influence of prediction errors on optimization results. The
study by Shi et al. [41] has comprehensively validated the feasibility,
efficiency, and accuracy of this method; hence, this aspect will not be

Fig. 4. Height matrix representing the pin-fin height distribution.

Fig. 5. Schematic of the constrained dynamic surrogate model: (a) example function distribution, (b) Kriging model fit distribution, (c) EI distribution without
constraints, and (d) EI distribution with constraints.
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reiterated in the present study.
In this study, Latin hypercube sampling (LHS) serves as the sampling

design method; the Kriging model (KRG) has been chosen as the surro-
gate model, and a genetic algorithm is utilized to identify the optimal
value. In the process of updating, newly-added sample points tend to
converge around the optimal value. When confronted with constrained
optimization problems, if the optimal value resides outside the
constraint space, numerous selected candidate sample points become
ineffective. Consequently, it is imperative to adjust the expected
improvement (EI) values of the surrogate model to guarantee that the
integrated sample points fall within the constraint space, thereby
securing the optimal solution within the constraint space. Here we
choose the Griewank function as an example to show this constraint
imposition method. Its distribution in a two-dimensional plane is shown
in Fig. 5 (a), where the shading indicates the function’s value, and the
closed curves represent the function’s contour lines. The LHS method
was employed for sampling, and the KRG model was utilized for
assessment, yielding the predictive distribution function illustrated in
Fig. 5 (b). This is derived from multiple data points in Fig. 5 (a), but due
to data incompleteness and the complexity of the example function,
there are some differences between the function images in Fig. 5 (a) and
(b). Using the KRG model, we can also obtain the EI values in the two-
dimensional plane as shown in Fig. 5 (c). The value of EI considers the
Gaussian distribution of the test point positions and the current model’s
optimal value, representing the expected value of test points being lower
than the current model’s minimum value. In other words, a higher EI
value indicates a higher likelihood of being the optimal design point,
and the location with the maximum EIwill be selected as the position for
the candidate sample point by balancing the standard normal cumula-
tive distribution function and the standard normal probability density
function. The specific calculation method can be found in reference
[41]. This method not only considers the current optimal value but also
the distribution of errors. From an expectation perspective, the distri-
bution of EI values takes into account both the probability of improving
the current predicted function’s minimum value and the extent of the
improvement, thereby greatly enhancing optimization efficiency. From
Fig. 5 (c), we can see that without constraints, the location of EImax is at
the center of multiple rings in the upper right corner. After applying
constraints, the penalty function sets the EI values in the non-compliant
regions to zero, resulting in the new EI distribution shown in Fig. 5 (d). It
can be seen that the location of EImax satisfying the constraints differs
from the original, meaning the candidate point changes. This ensures
that the progressively included sample points remain within the con-
strained space, aiding in finding the optimal solution within the con-
strained space.

The detailed methodology is depicted in Fig. 6. In this study, we
initially conduct uniform sampling of the initial sample set with a size Ni
= 150. The initial sample points are evaluated to determine their
compliance with the constraints, and those failing to meet the con-
straints are excluded, resulting in a subset, Scon, comprising Ni, con = 79
sample points. The sample points in Scon are then assessed to establish
initial performance metrics, leading to the formulation of the initial
surrogate model distribution. Integrating the distribution with a genetic
algorithm to refine the surrogate model, yielding a primordial minimal
thermal resistance value of Rh= 1.635 K/W.With ongoing optimization,
the total thermal resistance of the heat sink progressively declined, and
ultimately, at Na = 270, with EImax falling below 10− 4, the process
culminated in the attainment of a constrained minimum thermal resis-
tance value of Rh = 1.495 K/W, as depicted in Fig. 7. Examination of the
constrained (Mini -M) values reveals that the masses of newly added
sample points remain below that of the initial heat sink, indicative of
consistent adherence to the constraints throughout the optimization.
Subsequent iterations maintained a minimal discrepancy between the
mass of the original heat sink and that of the new sample points, sug-
gesting that within the imposed constraints, optimal thermal perfor-
mance of the heat sink is achieved when its mass approaches its upper

Fig. 6. Dynamic surrogate model optimization flow under constraints.

Fig. 7. Optimization process: (a) minimum thermal resistance, Rh, min, varies
with Na, (b) maximum EImax varies with Na, and (c) maximum (Mini – M) varies
with Na.
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limit.

4. Optimization results and discussion

The optimized height distribution for the best natural convection
performance of the pin-fin heat sink are shown in Fig. 8. The figure il-
lustrates a concave distribution pattern, with lower heights in the cen-
tral region and increasing heights towards the periphery of the heat
sink’s pin-fins. Excluding h31 and h13, the pin-fin heights within the
inner three layers are designated as the lowest in the design spectrum.
Conversely, the outermost pin-fins, with the exception of the diagonal
fin h55, assume the maximal values permitted by the design parameters.
The fourth layer of pin-fins is distributed in a high/low cross pattern.
Throughout the optimization, the height distribution of the pin-fins
underwent significant alteration without increased mass. This in-
dicates that uniform pin-fin heights do not facilitate optimal heat
dissipation, and that a varied height profile, with taller pin-fins at the
periphery and shorter ones internally, enhances thermal management.

Upon stabilization of the heat transfer between the heat sink and
ambient air following an internal heat flow input, the surface temper-
ature distribution is depicted in Fig. 9. In the original design, the sub-
strate’s overall temperature is elevated owing to heat influx, with the
peak temperature reaching 316.88 K at the center. Heat entering the pin-
fins disperses via natural air convection from the surface outward,
resulting in a temperature gradient decreasing upwards. Influenced by
solid thermal conductivity and natural air convection intensities, vary-
ing average temperatures are observed in the pin-fins at different loca-
tions, primarily evidenced by higher temperatures in the central area
and lower temperatures in the peripheral regions. However, following
pin-fin height optimization, the heat sink’s surface temperature is
notably reduced, with the central maximum temperature diminishing to
315.97 K—a decrease of 0.91 K from the pre-optimization state. Pin-fins
at the heat sink’s edge exhibit the most substantial temperature decline,
attributed to the more intense natural convection and their extended
length.

Heat dissipation of various pin-fins is depicted in Fig. 10. Alterations
in the heights of pin-fins on a uniform substrate, while not affecting the
overall heat dissipation area, result in a redistribution of thermal dissi-
pation across the fins. Prior to optimization, a uniform height distribu-
tion resulted in more efficacious natural convection heat transfer in the
peripheral pin-fins and less effective internal natural convection, leading
to greater heat dissipation in the outer regions and reduced dissipation
centrally. Within the same layer, the pin-fin located diagonally exhibits
the lowest heat dissipation, which incrementally increases towards both
ends of the diagonal. Post-optimization, the diminished heat dissipation
area of the central pin-fin induces a rise in its local thermal resistance,
whereas the heightened peripheral pin-fins experience decreased local
thermal resistance, cumulatively decreasing the heat sink’s overall

thermal resistance due to the internal and peripheral modifications.
Concurrently, the external pin-fins in direct contact with cool air expe-
dite direct heat removal by the ambient air, thereby diminishing the
internal pin-fins’ heat dissipation requirements and consequently
lowering the post-optimization temperature increment of the heat sink.

Fig. 11 and Fig. 12 illustrate the velocity and temperature distribu-
tion in cross-sectional views of heat sinks at varied heights, where sec-
tions A, B, C, and D correspond to elevations at y = 20, 40, 60, and 80
mm, respectively, and section E is the symmetric boundary of the XY
plane. As depicted in the figures, the heat sink facilitates heat transfer
from the pin-fins to the internal air; the air density decreases upon
heating, and the generated negative pressure induces a suction force,
driving cold external air flow horizontally towards the interior of the
heat sink. The viscous resistance exerted by the pin-fins’ surfaces upon
the air diminishes the horizontal velocity component; concurrently,
gravity induces an upward buoyant force, creating a vertical flow
ascending through the channels between the pin-fins. The peripheral
pin-fins of the heat sink, being in direct contact with the ambient cold
air, experience an incomplete boundary layer development, culminating
in a higher heat transfer intensity. During the inward airflow, the tem-
perature boundary layer around each pin-fin fully develops and merges
with the boundary layers of adjacent fins, leading to a lower heat
transfer intensity within the inner pin-fins.

Prior to the optimization of uniform-height pin-fins, sections A and B
exhibit identical pin-fin distributions; the difference in fluid and wall
viscous resistance is negligible, resulting in a buoyancy-driven increase
in airflow velocity from section A to section B. Transitioning from sec-
tion B to sections C and D, where pin-fins are absent, the internal airflow
of the heat sink encounters negligible viscous resistance. The external
cold air streams directly flow above the heat sink, converging with the
fluid emanating from the heat sink, thereby forming a vertical updraft.
With respect to temperature distribution, as air enters the heat sink and
is continuously heated by the pin-fins, its temperature progressively
increases, culminating in a significant temperature elevation in the heat
sink’s central zone. In sections C and D, the direct intermingling of
cooler external fluid with the warmer internal fluid markedly diminishes
the extent of the high-temperature zone. Owing to the absence of a
heating source, the high-temperature zone progressively contracts
vertically.

Comparing the gas velocity distribution results of sections C and D
before and after optimization, it is evident that the maximum gas ve-
locity above the heat sink is higher post-optimization, with a larger high-
velocity area. Analyzing the gas velocity distribution of section E before
and after optimization reveals that the inward flow speed of the gas
within approximately 70 mm above the heat sink substrate significantly
increases post-optimization. This indicates that the optimized pin-fin
structure has notably enhanced the intake of external gas.

Upon optimizing the heat sink’s height, the reduced height of the

Fig. 8. Matrix of optimal heights for pin-fin heat sinks.
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pin-fins in the central region diminishes the heat imparted to the air in
this region, decelerating the increase in air temperature and conse-
quently leading to a more homogeneous temperature distribution within
the cross-section. Concurrently, the reduction in pin-fin height di-
minishes the fluid resistance within the heat sink, accelerating air entry,
extending the development of the temperature boundary layer, and
consequently enhancing the natural convection heat transfer capacity of
the heat sink. In Sections C and D, the peripheral pin-fins remain in
direct contact with the cold air; despite heat being transferred to the air
via these fins, the gas within the central region is still hotter. The cooler
peripheral gas is drawn towards the central region by suction, which
reduces the central region’s gas temperature.

The comparison of air mass flow rate and average temperature across
the x-z section for various vertical y-values pre- and post-optimization is
depicted in Fig. 13. At y = 10 mm, the contraction of the high-
temperature zone results in the average temperature of the optimized
structure being 1.145 K lower than its pre-optimization counterpart. As
the y-coordinate increases, the air within the pre-optimization section
absorbs more heat. Vertically, the thickening of the natural convection
temperature boundary layer results in diminishing heat transfer in-
tensity, and a consequent rise in the section’s average temperature.

Beyond y = 50 mm, where the pin-fins cease, external cold air flows
above the heat sink, mixing with the high-temperature fluid and thereby
reducing the section’s average temperature. Post-optimization, with the
minimal pin-fin height set at 20 mm, a slight increase in air temperature
heated by the pin-fins is observed within the y = 10–20 mm range.
Subsequently, the persistent influx of cold air leads to the mixing of
cooler external air with the heated internal air of the heat sink, culmi-
nating in a gradual reduction of the fluid temperature. Ultimately, the
lowest average temperature is recorded at section y = 80 mm. The
change in mass flow rate indicates its increasing with height. Following
the optimization of the fin height, there is a reduction in the heat sink’s
internal flow resistance and a consistently higher air mass flow rate than
prior to optimization, suggesting enhanced entry of cold air and superior
heat dissipation performance of the heat sink.

To verify the effectiveness of the optimization, a comparison is
drawn between the optimized “low center - high surround” structure and
the “high center - low surround” design. To maintain equivalent quality
between both designs, the height for the latter configuration is deter-
mined using the formula Hc = 2H0-H, as depicted in Fig. 14. Compara-
tive analyses of the optimal design and the “high center - low surround”
design in terms of temperature and velocity are illustrated in Fig. 15 and

Fig. 9. Heat sink temperature distribution: (a) pre-optimization and (b) post-optimization.

Fig. 10. Heat dissipation of each pin-fin: (a) pre-optimization and (b) post-optimization.
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Fig. 16, respectively. The diminished height of the peripheral pin-fins
results in a weakened suction effect on the nearby air, leading to a
decrease in the influx of cooler air into the heat sink, thereby hindering
effective heat dispersion. Consequently, this results in a more extensive
high-temperature zone at the design’s center in the “high center - low
surround” configuration, and an average heat sink temperature that
exceeds the optimally designed average.

5. Experiment and verification

5.1. Experimental bench and procedure

An experimental bench has been constructed to conduct research on
the optimization outcomes and to validate the performance of the
enhanced heat sink. Fig. 17 and Fig. 18 depict the schematic and
physical diagrams of the experimental bench, respectively. Placed hor-
izontally on the bench, the heat sink interfaces with a polyimide heating

Fig. 11. Velocity distribution cloud for different cross sections: (a) pre-optimization and (b) post-optimization.

Fig. 12. Temperature distribution cloud map of different sections: (a) pre-optimization and (b) post-optimization.
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film, which matches the bottom shape of the substrate, serving as the
experimental heat source. The heating wires within are tightly and
uniformly arranged, ensuring a uniform heat flow throughout the

heating process. A double layer of insulating cotton, with a thickness of
50mm and ameasured thermal conductivity of 0.034W/(m⋅K), lines the
back of the heating film to prevent experimental heat leakage into the
air. An adjustable transformer, linked to a power meter with a 0.01 W
rating, supplies the heating film’s heat. T-type thermocouples are uti-
lized, interfaced with the data acquisition system. To minimize ther-
mocouple measurement error, nine temperature points between 293 K
and 333 K are established, with a post-calibration error margin of ±0.1
K. Thirteen thermocouples are evenly distributed across the heating
surface to gauge its average temperature, while an additional thermo-
couple monitors the ambient conditions. The thermocouples’ distribu-
tion on the heating surface is illustrated in Fig. 19.

Additive manufacturing technology facilitates the processing of both
the initial and the optimized models, yielding actual heat sinks that
mirror the dimensions of the numerical prototypes. The aluminum alloy
AlSi10Mg is employed as the material, possessing a density (ρ) of 2.665
g/cm3, thermal conductivity (λ) of 147 W/(m⋅K), and specific heat ca-
pacity (cp) of 890 J/(kg⋅K). The model surface is coated with TASCO
blackbody spray to achieve an emissivity of approximately 0.94, with a
temperature resistance up to 773 K. An electronic weighing measured
the mass of pre- and post-optimization heat sinks. Fig. 18 (b) and Fig. 18
(c) display the heat sinks alongside the weighing results. Due to the
manufacturing error, the pre-optimization heat sink weighing 290.0 g
and the post-optimization heat sink is 289.7 g. The negligible mass
difference of 0.3 g is <0.2% of the total mass, and permits the

Fig. 13. Mass flux and average temperature of air in x-z section under different
y values.

Fig. 14. “High center - low surround” heat sink structure design.

Fig. 15. Comparison of temperature distribution between optimal design and “ high center - low surround” design: (a) optimal design and (b) “high center - low
surround” design.
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assumption that their qualities are equivalent, thus considering the mass
of the two heat sinks as identical.

Temperature distribution across the heat sink surface is gauged using
an infrared thermal imager. The infrared imager, supplied by Fotric,
boasts a measurement range from − 233 K to 773 K. A fixed distance of
0.5 m is maintained between the infrared detector and the target, with
ambient conditions recorded at 300 K and 70% humidity. Emissivity
calibration of the coating is achieved by comparing thermocouple
readings with infrared measurements at varying temperatures, ensuring
the temperature discrepancy did not surpass ±0.2 K.

Upon construction of the experimental bench, environmental con-
ditions are meticulously monitored and regulated to maintain a stable
indoor temperature approximating 300 K, akin to the predetermined
simulated conditions. This ensured minimal indoor air convection and
negated interference from extraneous heat sources in proximity to the
experimental setup. Ensuring no power leakage occurs, the power
switch and data acquisition system are activated, followed by adjust-
ment of the power supply to commence the experiment. The tempera-
ture at all measurement points is continuously observed. Once the
temperature at all measurement points is stabilized, exhibiting fluctua-
tions not exceeding 0.1 K over 20 min, the infrared camera is deployed

to capture the heat sink’s surface temperature.

5.2. Uncertainty analysis

Uncertainty analysis entails the estimation of experimental result
errors attributable to the intrinsic measurement accuracy of the instru-
ment used, constituting a crucial assessment of the experimental out-
comes’ reliability. For an assumed target value M, derived from several
independent variables x1, x2, ….xn that are uncorrelated, the associated
experimental uncertainty is calculated using the formula below:

M = f(x1, x2,…, xn) (11)

U(M) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

[
∂f
∂xi

U(xi)
]2

√
√
√
√ (12)

The uncertainties U(xi) of the independent variables x1, x2, …, xn are
individually estimated to determine the total experimental measure-
ment uncertainty. The total thermal resistance calculation is dependent
on the heating surface temperature (Th), the ambient temperature
(Tamb), and the input power (Qin). Hence, the formula to calculate the
uncertainty is expressed as:

ΔRh

Rh
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

ΔTh
Th

)2

+

(
ΔTamb
Tamb

)2

+

(
ΔQin

Qin

)2
√

(13)

where

ΔPin
Pin

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

ΔV
V

)2

+

(
ΔI
I

)2

+

(
ΔQloss

Qin

)2
√

(14)

Table 2 displays the accuracy of the instruments utilized in the
experiment. Based on the instrument’s accuracy calculations, the un-
certainty associated with the measured thermal resistance value dis-
cussed in this study is quantified as 2.057%.

5.3. Analysis of experimental results

At an input power of Qin= 10.08 W and a heat flux of q= 700 W/m2,
the temperature values at each thermocouple monitoring point are
recorded. Fig. 20 (a) presents a comparison and validation of the
simulation and experimental results for the structure pre- and post-
optimization. The figure illustrates that the simulation data aligns

Fig. 16. Comparison of velocity distribution between optimal design and “ high center - low surround “ design: (a) optimal design and (b) “high center - low
surround “design.

Fig. 17. Schematic diagram of the experimental bench: 1. Test heat sink; 2.
Heating film; 3. Thermal insulation cotton; 4. Heat sink support rack; 5.
Thermocouple; 6. Power input line; 7. Computer; 8. Data acquisition instru-
ment; 9. Power meter; 10. Voltage regulator; 11. Infrared thermal imager.

W. Fan et al. International Communications in Heat and Mass Transfer 158 (2024) 107962 

11 



closely with the experimental data, thereby confirming the simulation
results’ accuracy. Due to heat leakage from the heat source and contact
thermal resistance that occur during heat transfer—phenomena not
accounted for in the simulation—the experimental values are slightly
lower than the simulated ones. Experimental observations also reveal

that the post-optimization temperature of the pin-fin heat sink’s heating
surface is lower than its pre-optimization state, with the temperature
differential at the corresponding positions aligning with the simulation
results, thus substantiating the optimization’s efficacy as modeled
dynamically. Fig. 20 (b) depicts the calculated total thermal resistance
of the heat sink pre-and post-optimization. The discrepancy between the
experimental and simulated values, both pre- and post-optimization,
falls within 2%. When considered alongside uncertainty analysis, this
discrepancy remains within acceptable limits, affirming the simulation
results’ validity. The total thermal resistance of the heat sink prior to
optimization was Rh = 1.579 K/W, whereas post-optimization, it
measured Rh = 1.465 K/W, indicating a reduction of 7.220% in the heat
sink’s total thermal resistance as determined experimentally.

Furthermore, the surface temperature distributions pre- and post-
optimization are analyzed using an infrared imager and contrasted
with the simulation results, as depicted in Fig. 21. The infrared imaging
findings confirm that the heat sink’s surface temperature distribution
aligns with the experimental outcomes, further validating the simulation
results. Additionally, infrared imaging reveals that the optimized heat
sink’s surface temperature distribution is lower than its pre-optimized
state, suggesting enhanced heat dissipation under identical mass and
input power conditions.

The aforementioned analysis indicates that, under a constant input
power, the optimized structure demonstrates superior heat dissipation
performance according to both experimental and simulation results. To
further substantiate the performance comparison of the heat sink pre-
and post-optimization at varying power levels, experiments assessing
heat dissipation performance are conducted on the structures pre- and
post-optimization at various power levels. The input heat flux varied
from 500 to 1200 W/m2, yielding the total thermal resistance distribu-
tion for both the heat sinks before and after optimization, as illustrated
in Fig. 22. As input power increases, the intensity of natural convection
heat transfer and corresponding radiation heat transfer both augment,
leading to a decrease in the heat sink’s total thermal resistance. Within

Fig. 18. The experimental bench and heat sink: (a) experimental bench, (b) equal-height pin-fin heat sink, and (c) optimal pin-fin heat sink.

Fig. 19. Distribution diagram of thermocouples.

Table 2
Measuring instruments and accuracy.

instrument precision

Thermocouple 0.1 K
Data acquisition instrument 0.001 K
Pressure regulator 2%
Power meter 0.01 W
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the tested range of input power, the optimized structure’s total thermal
resistance is lower, and its heat dissipation performance surpasses that
of the pre-optimized structure at the same mass.

6. Conclusion

In this study, a pin-fin heat sink was chosen to optimize heat transfer
efficiency under natural convection. To address the requirements of heat
transfer optimization under constrained conditions, an enhanced dy-
namic surrogate model was developed, and an optimal pin-fin height
distribution that does not exceed the original design mass was identified
based on the present model. This research elucidates the design princi-
ples of pin-fin height distribution in relation to natural convection and
confirms the optimization outcomes through experimental validation.

Some key conclusion can be drawn as follows:

1. Equal-height pin-fin heat sinks exhibit a distribution pattern marked
by reduced heat dissipation in the central region and improved
dissipation in the peripheral zones. By optimizing the pin-fin height
distribution, it is possible to redistribute the heat dissipation and thus
improve the heat dissipation performance.

2. A key design principle for pin-fin heat sinks involves elongating fins
exhibiting high heat dissipation intensity and truncating those with
lower intensity. The optimal configuration exhibits a gradational
trend of diminishing pin-fin heights from the periphery towards the
center. The thermal resistance of the heat sink, as optimized in this
study, shows a reduction of approximately 7%.

3. Optimizing the pin-fin height distribution within the heat sink leads
to an enhanced distribution of both the flow and temperature fields,
a reduced air flow resistance, an increased mass flux, and a more
uniform temperature distribution of the air within the heat sink.

4. The enhancement of thermal dissipation performance in the opti-
mized structure has been confirmed through a comparison between

Fig. 20. Comparison of simulation and experimental results when q = 700 W/m2: (a) temperature of thermocouple measuring points and (b) the total thermal
resistance of the heat sink.

Fig. 21. Heat sink surface temperature distribution: (a) experimental infrared
images and (b) numerical simulation results.

Fig. 22. Total thermal resistance of the structure pre- and post-optimization
under different input power.
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the numerical and experimental results. The temperature profiles of
both the heating surface and the heat sink surface are consistent with
those predicted by simulation. Following optimization, thermal
resistance decreases with higher power input, and the resulting
performance consistently exceeds the pre-optimization state across
various power levels.
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