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A B S T R A C T

Lithium-ion batteries, growing in prominence within energy storage systems, necessitate rigorous health status
management. Artificial Neural Networks, adept at deciphering complex non-linear relationships, emerge as
a preferred tool for overseeing the health of these energy storage lithium-ion batteries. This paper presents
a comprehensive review of the current research in this field. The discussion initiates with the distinctions
between energy storage batteries and power batteries, the composition and management of battery energy
storage systems, and common evaluation metrics such as State of Health, State of Charge, and Remaining
Useful Life. This is followed by outlining common open datasets, data preprocessing techniques, health feature
extraction methods, and battery health prediction approaches. Emphasis is laid on the utilization of Artificial
Neural Networks for lithium-ion battery health management, encompassing a spectrum of networks from
Feedforward Neural Network, Extreme Learning Machine, Convolutional Neural Network, Recurrent Neural
Network (with Long Short-Term Memory and Gated Recurrent Unit) to Transformer and methodologies like
transfer learning and the integration of traditional techniques with Artificial Neural Networks. Concluding
remarks ponder over the future prospects and challenges of using Artificial Neural Networks for lithium-ion
battery health management.
1. Introduction

As global demand for sustainable and clean energy intensifies,
ensuring the stability and reliability of power supply has become
increasingly critical, highlighting the growing importance of energy
storage systems (ESSs). Compared to traditional energy storage meth-
ods like pumped hydro storage and compressed air energy storage,
lithium-ion batteries have become one of the preferred choices within
battery energy storage systems (BESS) due to their high energy density,
outstanding modularity, superior energy conversion efficiency, and
rapid response times [1–3].

BESSs can store energy generated from solar panels, wind turbines,
or other renewable sources, providing households, industries and busi-
nesses with a reliable and cost-effective power supply during power
outages or periods of high electricity prices [4,5]. Recent analyses
have revealed that the deployment of BESS offers a promising strategy
for the seamless integration of renewables into the power grid, where
lithium-ion batteries are making a significant impact [6–8].

∗ Corresponding author.
E-mail address: zcliu@hust.edu.cn (Z. Liu).

Lithium-ion batteries have also emerged as the preferred choice for
electric vehicle (EV) power batteries [9]. However, the requirements
for this application differs generally from energy storage. Power bat-
teries in EVs must provide high energy density [10,11], fast charging
capabilities [12,13], while also ensuring safety and thermal manage-
ment under vibration and structural damage scenarios [14,15]. In
contrast, Lithium-ion batteries for energy storage applications require
long cycle life [16,17], low self-discharge rate [18,19], and tolerance
to a wide range of operating conditions [20].

The degradation of lithium-ion batteries is a complex process in-
fluenced by various factors, including operating conditions, design,
and chemistry. Over time, these factors contribute to a decline in
the battery’s capacity, power, and overall performance [21,22]. The
challenge of managing the health of lithium-ion batteries lies in the
complexity of these degradation processes and the interdependence of
various factors [23,24].
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Nomenclature

𝑄𝑚𝑎𝑥 Battery’s current maximum capacity.
𝑄𝑟𝑎𝑡𝑒𝑑 Battery’s rated capacity.
𝑄𝑟𝑒𝑚𝑎𝑖𝑛 Battery’s current remaining capacity.
�̃�𝑡 New gate of the GRU at time 𝑡.
𝐫𝑡 Reset gate of the GRU at time 𝑡.
𝐳𝑡 Update gate of the GRU at time 𝑡.
𝐜𝑡 Cell gate of the LSTM at time 𝑡.
𝐟𝑡 Forget gate of the LSTM at time 𝑡.
𝐢𝑡 Input gate of the LSTM at time 𝑡
𝐨𝑡 Output gate of the LSTM at time 𝑡.
𝐡𝑡 Hidden state at time 𝑡 associated with input

𝑥𝑡+1.
𝐖𝑙 Weight matrix between layers 𝑙 − 1 and 𝑙.
√

𝑑𝑘 Scaling factor of the Transformer.

The complex nature of battery degradation mechanisms, combined
ith the diverse and dynamic operating conditions of BESSs, necessi-

ates advanced modeling techniques that can capture and predict the
tate of Health (SoH) [25], State of Charge (SoC) [26], and Remaining
seful Life (RUL) [9] of lithium-ion batteries. Artificial Neural Net-
orks (ANNs) have risen to prominence as an invaluable tool in the
ealth management of lithium-ion batteries within BESSs. Their effec-
iveness stems from their ability to model non-linear relationships [27],
crucial aspect given the intricacies of battery behaviors influenced by

actors like temperature, charge–discharge cycles, and aging. Moreover,
NNs possess an innate capacity for feature learning, enabling them

o discern and extract significant patterns from raw data that indicate
attery health or potential degradation [28]. Their adaptable nature
llows them to fine-tune predictions based on incoming data [29],
nsuring consistent accuracy even with evolving battery conditions
r the introduction of new battery types. Additionally, they offer im-
ressive scalability [30], efficiently processing vast amounts of data,
hich becomes essential as the scale of energy storage monitoring
xpands. Beyond these capabilities, ANNs can be integrated seamlessly
ith other machine learning strategies, like reinforcement learning for
ecision-making or clustering algorithms for health-based battery cate-
orization. Collectively, these attributes highlight ANNs as a preferred
olution for overseeing the health of lithium-ion batteries in diverse
nergy storage scenarios.

In Fig. 1, the comprehensive approach of using ANNs for managing
he health of energy storage lithium-ion batteries is elucidated. The
rocess begins with ’Data Collection’, where pertinent metrics such as
harge and discharge current, voltage, temperature, and others, are
athered from the batteries. This collected data is then directed through
n intricate ’Data Pre-procession’ phase, during which it is filtered, nor-
alized, resampled, and subsequently divided into subsets for analysis,

raining, and testing. In the ’Feature Extraction’ stage, a multitude of
echniques including domain-specific knowledge extraction, principal
omponent analysis, classification methods, clustering methods, and
ven ANNs, are employed to cull crucial features from the raw data. The
Model Development’ phase incorporates a varied set of methods, rang-
ng from model-based approaches such as electrochemical, equivalent
ircuit, and impedance models, to data-driven methodologies. While
NNs are emphasized, alternative techniques like the Kalman Filter

KF), Particle Filter (PF), Support Vector Regression (SVR), Gaussian
rocess Regression (GPR), and Random Forest Regression (RFR) are
lso potential additions. The culmination of the process is the ’Health
anagement’ phase, which meticulously manages the battery’s health
etrics. This phase delineates the SoH, SoC, and RUL facets, each
2

ncompassing a suite of strategies and actions. For instance, SoH covers
performance estimation, end-of-life prediction, adaptive operation, and
failure detection, while SoC is centered on energy estimation, charge
optimization, discharge planning, and safety assurance. RUL, on the
other hand, prioritizes degradation forecasting, usage pattern mod-
ifications, proactive maintenance scheduling, and cost management.
The application of ANNs is growing within various stages of lithium-
ion battery health management, from data collection to health-centric
strategic actions.

To obtain a thorough understanding of the current landscape of
lithium-ion battery health management, we initiated a comprehensive
literature search across five prominent databases: WebofScience, Sci-
encedirect, IEEEExplore, Springer, and MDPI. Utilizing a combination
of targeted keywords including ‘‘energy storage’’, ‘‘lithium-ion battery’’,
‘‘SoH’’, ‘‘SoC’’, ‘‘RUL’’, ‘‘health management’’, and ‘‘prognostics’’, we
focus on articles published between 2020 and 2022. This meticulous
process, illustrated in Fig. 2, yielded 437 relevant pieces of literature
from major journals. This collection comprises 32 survey reports, 390
research papers, 62 publications specific to BESSs, and 128 articles
centered on EVs. Notably, within these works, 118 studies leverage
ANNs for modeling battery state, whereas 131 predominantly adopt
traditional machine learning methodologies.

The literature selection for this study followed these steps:

1. Identification: Using the specified keywords, we initiated a pre-
liminary search and identified 764 articles across the databases.

2. Screening: After removing duplicate and similar papers from the
preliminary set of 764 articles, 437 unique articles remained.

3. Eligibility: By assessing the titles and abstracts, we excluded 121
articles that deviated from the research focus on battery health
management, leaving 316 articles.

4. Included: Based on our specified inclusion criteria, we thor-
oughly reviewed the remaining articles, eventually selecting 119
that met all the criteria.

ANNs have demonstrated remarkable success in a wide range of
applications, such as computer vision, speech recognition, finance, and
business data analysis [31,32]. Consequently, our survey primarily
focuses on the current state of research employing ANNs for lithium-ion
energy storage battery health management. By honing in on this rapidly
advancing field, we aim to provide a comprehensive overview of the
latest methodologies, techniques, and findings, as well as to identify
potential avenues for future research and innovation in the realm of
ANN application of lithium-ion battery health management for energy
storage applications.

In this study, a systematic and detailed overview of the recent ad-
vancements in ANNs for health management of energy storage lithium-
ion batteries is provided, with the key contributions enumerated as
follows.

1. This paper provides an overview of ANN applications in lithium-
ion battery health management for BESSs.

2. The paper highlights the distinctions between energy storage and
power application scenarios for lithium-ion batteries.

3. A summary of public datasets, common features, indicators, and
methods employed in lithium-ion battery health management is
provided.

4. The paper concludes by discussing future challenges in applying
ANNs for prognostics and health management of lithium-ion
storage batteries.

The remainder of this paper unfolds systematically to offer a com-
prehensive insight into ANN application in lithium-ion battery health
management for energy storage. Section 2 elucidates the nuances of
energy storage batteries versus power batteries, followed by an ex-
ploration of the BESS and the degradation mechanisms inherent to
lithium-ion batteries. This section culminates with an introduction of

key battery health metrics: SoH, SoC, and RUL. In Section 3, we pivot
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Fig. 1. ANN application for energy storage lithium-ion battery health management. This figure delineates the comprehensive application of ANNs in the health management
of energy storage lithium-ion batteries. Beginning with the collection of pertinent battery metrics, the process undergoes phases of data preprocessing, feature extraction, model
development, and ultimately, health management. Each phase integrates varied methodologies, with ANNs underscoring its significance in feature extraction and model development
in optimizing and ensuring battery health.
Fig. 2. Flowchart of the literature selection. This figure presents a flowchart detailing
our literature selection process for energy storage battery health management. Initiating
with a broad search across five major databases, we systematically narrowed down our
selection through stages of identification, screening, eligibility assessments, and final
inclusions. By the end of the rigorous process, 119 articles met our stringent criteria,
reflecting the most pertinent literature in the domain.

to the methodologies, delving into public datasets, pre-processing tech-
niques, feature extraction, and a range of health prediction methods
tailored for these batteries. Section 4 hones in on the application
of ANNs, showcasing a spectrum from Feedforward Neural Networks
(FNNs) to Transformers, and touches upon advanced methodologies
like transfer learning and ensemble strategies. The paper wraps up with
a summary in Section 5, encapsulating the key takeaways.
3

2. Health management of lithium-ion batteries for energy storage

2.1. Energy storage battery versus power battery

Generally, lithium-ion batteries can be classified into consumer,
power, and energy storage batteries based on their application sce-
narios, with power and energy storage batteries representing the most
promising areas for growth and innovation [33,34].

Batteries employed in EVs and those utilized in energy storage
devices are fundamentally energy storage batteries. However, their
specific application contexts dictate the performance and service life
requirements for each type. Power batteries, often referred to as EV
batteries, must provide high power [35], high energy density [36],
and fast charging capabilities [37] to ensure adequate acceleration and
driving range. In contrast, energy storage batteries are designed to store
and release energy over extended periods of time, prioritizing high
energy efficiency [38,39] and long cycle life for applications such as
grid support and renewable energy integration.

As summarized briefly in Table 1, although both power and energy
storage batteries share the overarching objective of storing electrical
energy, their unique performance and service life demands necessitate
tailored designs and optimizations to ensure optimal operation within
their respective application contexts.

2.2. Battery energy storage system

BESS are complex and intricately designed to ensure efficient stor-
age, management, and utilization of energy. As shown in Fig. 3, the
primary components of a BESS include the Battery System (BS), the
Power Conversion System (PCS), and the Battery Management System
(BMS) [4,5].

BS constitutes the core of a BESS and is responsible for storing
electrical energy. Typically comprising an array of lithium-ion battery
cells or modules, the BS provides the necessary energy capacity and
power output to respond the demands of the specific application.
The performance of the BS is determined by factors such as energy
efficiency, power density, and cycle life, which are influenced by the
chemistry, materials, and design of the individual battery cells.

PCS serves as the interface between the BS and the utility grid or
load. The primary function of the PCS is to convert the electrical energy
stored in the BS to the appropriate form required for grid integration or
load consumption. This may involve converting DC from the batteries
to AC for grid connection or vice versa, as well as voltage regulation
and power factor correction. The PCS is essential for ensuring the
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Table 1
Energy storage battery versus power battery.

Power battery Storage battery

Application scenarios Electric vehicles, electric bicycles, and other
electric-powered equipment

Peak regulation and frequency control, renewable energy grid
integration, and microgrids

Performance requirements High energy density, power density, safety, and
thermal management

Mobility not required; energy density varies; power density depends
on specific requirements

Service life Cycle life ranges from 1000 to 3000 Cycle life typically exceeds 8000 cycles

Battery type Lithium Iron Phosphate (LiFePO4) batteries are
frequently chosen for safety and economic reasons

Wide range of battery types, including Lithium Nickel Manganese
Cobalt Oxide (NMC), LiFePO4, and Lithium Titanate (LTO)

Competition Competing with traditional combustion engines Facing competition from traditional peak and frequency modulation
technologies such as flywheels, fuel cells, and pumped hydro storage
Fig. 3. Battery Energy Storage System. This figure showcases the integral components
of a BESS: BS, PCS, and BMS. The BS stores energy, the PCS manages its conversion and
distribution, and the BMS oversees its safety and optimization. These components work
together to ensure efficient and reliable storage, conversion, and delivery of electrical
energy.

efficient and reliable operation of the BESS, as it manages the flow of
electrical energy between the BS and the grid or load.

BMS is a crucial component of the BESS, responsible for monitoring,
controlling, and safeguarding the operation of the BS. The BMS contin-
uously tracks vital parameters such as voltage, current, temperature,
and SoC for each battery cell or module, and utilizes this information
to optimize performance, prevent over-charging or over-discharging,
and ensure thermal stability. Furthermore, the BMS provides diagnostic
data for battery health estimation and prognostics, enabling the early
detection of potential issues and facilitating proactive maintenance to
extend the life and reliability of the Battery System.

2.3. Degradation of lithium-ion batteries

The degradation of lithium-ion batteries is a complex process in-
fluenced by various factors, including operating conditions, design,
and chemistry. Over time, these factors contribute to a decline in the
battery’s capacity, power, and overall performance.

The primary mechanisms contributing to lithium-ion battery degra-
dation can be broadly categorized into two groups: capacity fade and
power fade. Capacity fade refers to the gradual loss of a battery’s ability
to store energy, which is mainly caused by the loss of active lithium and
the deterioration of the electrode materials [40]. On the other hand,
power fade is associated with the increase in the internal resistance of
the battery, which results in reduced power output and efficiency [41].

Several factors contribute to these degradation mechanisms. One
major factor is the cycling of the battery, which involves repeated
charging and discharging. During cycling, side reactions may occur,
leading to the formation of a solid electrolyte interface on the elec-
trodes [22], which increases internal resistance and contributes to
capacity fade. Ambient temperatures can also accelerate degradation
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by increasing the rate of these side reactions and causing thermal stress
on the battery materials [42].

Another critical factor is the SoC of the battery. It is common
for BESSs to be at a high SoC in order to respond to unpredictable
demand. Operating at high SoC levels for extended periods can cause
lithium plating on the anode, leading to irreversible capacity loss [43].
Similarly, over-discharging the battery can result in excessive voltage
drops, which can cause structural and chemical changes in the electrode
materials, further contributing to degradation [43].

The challenge of managing the health of lithium-ion batteries lies in
the complexity of these degradation processes and the interdependence
of various factors. Accurately predicting the SoH and RUL of a battery
requires the development of advanced models that can capture the
various degradation mechanisms and consider the impact of operating
conditions and battery design [25].

Furthermore, in practical energy storage applications, lithium-ion
batteries are often subjected to diverse and dynamic operating con-
ditions, individual batteries tend to exhibit unique degradation pat-
terns [44]. This variability adds a layer of complexity to the task of
estimating the health condition of energy storage lithium-ion batteries.
As the demand for energy storage batteries continues to grow, further
research and innovation in battery health management are essential to
meet the challenges associated with their widespread deployment.

2.4. SoH

SoH is a vital metric for gauging the condition of a lithium-ion
battery, and it is conventionally defined in terms of capacity [45].
Specifically, SoH is the ratio of the battery’s current maximum capacity
to its rated capacity, expressed as a percentage:

𝑆𝑜𝐻 =
𝑄𝑚𝑎𝑥
𝑄𝑟𝑎𝑡𝑒𝑑

× 100%, (1)

where 𝑄𝑚𝑎𝑥 and 𝑄𝑟𝑎𝑡𝑒𝑑 represent the rated capacity and the battery’s
current maximum capacity.

A higher SoH value indicates that the battery is closer to its original
capacity, while a lower value signifies a greater degree of degradation.
When the capacity of a battery at full charge declines by 20%–30% of
the rated capacity, it is normally considered to have reached End of
Life (EOL) and needed to be retired [46]. In addition to capacity-based
SoH, there are also definitions of SoH from a power perspective, which
consider factors such as internal resistance and discharge power capa-
bility. This alternative approach to defining SoH can provide additional
insights into a battery’s overall performance and efficiency.

Prior to estimating the SoH of a lithium-ion battery, it is recom-
mended to cycle the battery several times in order to stabilize its
capacity [47]. Once stabilized, a quantitative approach such as coulomb
counting can be employed to measure the maximum discharge capacity
of the battery over a full charge and discharge cycle. Subsequent
measurements of the amount of capacity discharged by the battery
represent its current 𝑄𝑚𝑎𝑥.

However, real-world applications often do not permit batteries to
undergo full charging and discharging cycles. In such cases, machine
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learning methods are typically employed to estimate the current SoH
by integrating experimental data and operational parameters from
the battery’s usage history. This approach can inform decisions re-
lated to battery maintenance, replacement, and optimization in various
practical contexts.

When the SoH declines, the aging of the battery may begin to ac-
celerate significantly. The point at which this accelerated aging occurs,
which may not always be readily apparent, is referred to as the SoH
knee-point.

It is important to note that the SoH of an energy storage battery is
a dynamic metric that evolves over time. A dramatic decline in SoH
within a short period may suggest the presence of an internal fault
within the battery, necessitating further investigation and potential re-
mediation. Ultimately, accurate and reliable assessment of SoH plays a
critical role in maximizing the performance and lifespan of lithium-ion
batteries across various applications.

2.5. SoC

The SoC serves as a metric for evaluating a battery’s current re-
maining capacity, providing insights into its operational status and
informing decisions related to charging, discharging, and battery man-
agement. SoC is typically defined as the ratio of the battery’s current
remaining capacity to its current maximum capacity, expressed as a
percentage. The definition of SoC can be expressed as

𝑆𝑜𝐶 =
𝑄𝑟𝑒𝑚𝑎𝑖𝑛
𝑄𝑟𝑎𝑡𝑒𝑑

× 100%, (2)

where 𝑄𝑟𝑒𝑚𝑎𝑖𝑛 and 𝑄𝑟𝑎𝑡𝑒𝑑 represent the battery’s current remaining
capacity and the rated capacity.

A higher SoC value indicates that the battery has more capacity
remaining, while a lower value signifies that the battery has been
partially or substantially depleted. SoC can be conceptualized as a time-
varying nonlinear function of remaining capacity that is influenced by
factors such as temperature, charging, and discharging. Consequently,
the SoC provides valuable short-term information on battery capacity,
which is crucial for optimizing battery performance and ensuring safe
operation.

Maintaining the energy storage battery within a reasonable SoC
range during use is essential for avoiding damage, prolonging its lifes-
pan, and effectively fulfilling its energy storage function. Straying
outside this optimal range, either through overcharging or deep dis-
charging, can lead to accelerated degradation or even catastrophic
failure, compromising both the safety and efficiency of the battery
system.

Accurately estimating the SoC of a battery can be challenging, as
the calculation implies that the battery will be completely depleted,
which is not always the case in real-world applications. Moreover, fac-
tors such as ambient temperature, battery temperature, and discharge
power requirements can vary during the discharging process, further
complicating the estimation of SoC.

2.6. RUL

The RUL of a lithium-ion battery is an metric employed to estimate
the number of cycles a battery has left before it reaches EoL.

Estimating the actual RUL of a battery typically involves analyzing
SoH in conjunction with the battery’s degradation path under its spe-
cific usage scenario. This approach accounts for the consideration of
various factors that influence battery degradation, such as temperature,
charging and discharging patterns, and the battery’s usage history.

Batteries with long RUL are essential for energy storage applica-
tions due to the high capital investment, dependability and reliability
requirements, environmental considerations, regulatory requirements,
and reduced maintenance costs. Ensuring a long RUL for batteries used
in energy storage applications is crucial for maximizing the overall
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performance, sustainability, and cost-effectiveness of these systems.
3. Approaches to lithium-ion battery health management

3.1. Public datasets

Publicly available datasets [48] provide valuable information on
battery performance degradation and usage patterns, enabling re-
searchers to develop and refine models, algorithms, and techniques
for estimating battery health indicators such as SoH, SoC, and RUL.
Here are some notable public datasets in the field of battery health
assessment.

Stanford-MIT dataset [49] compiled through a collaboration be-
tween Stanford University and the Massachusetts Institute of Tech-
nology, offering two consecutive groups of tests. Group 1 comprises
124 batteries of the same specification, tested in three batches under
the same environmental conditions. In each cycle, the ‘‘C1(Q1)-C2’’
protocol was used for fast charging, begins by charging the battery
at a constant current of ‘‘C1’’ until it reaches a SOC of ‘‘Q1%’’. Upon
reaching ‘‘Q1%’’ SOC, the charging rate switches to a constant current
of ‘‘C2’’ and continues until the battery achieves 80% SOC. After this,
the battery adopts a 1C Constant Current-Constant Voltage (CC-CV)
charging approach until it is fully charged. Then, a 4C rate was applied
for discharging. The purpose of this group was to verify the RUL of the
battery under different charge protocols [47]. Group 2 consists of 224
APR18650M1ALFP cells, tested in five batches at a controlled ambient
temperature of 30 ◦C. The testing protocol employed for fast charging
and discharging involved a ‘‘CC1-CC2-CC3-CC4’’ sequence, with a 4C
discharge rate for each cycle. The ‘‘CC1-CC2-CC3-CC4’’ testing protocol
goes further and breaks the charge of first 80% SOC progression into
four equal segments, each representing a constant current charging step
over a 20% SOC window. Specifically, CC1 charges the battery from 0%
to 20% SOC, CC2 from 20% to 40%, CC3 from 40% to 60%, and CC4
from 60% to 80%. The goal is to fine-tune these four steps to establish a
optimized charging protocol that enhances the battery’s RUL. The first
four batches of batteries underwent 100–120 cycles, while the final
batch was cycled to battery failure in order to verify the close loop
optimization of fast charge protocol [50].

Centre for Advanced Life Cycle Engineering (CALCE) datasets [51]
provided by the University of Maryland, focus on battery perfor-
mance, aging, and failure mechanisms. Among these datasets, the
CS2 dataset [52–54] is particularly well-known, as it encompasses a
diverse range of tests designed to simulate various operating conditions
and user behaviors. The CS2 dataset comprises six different types
of tests: Type 1 for constant 0.5C cycling; type 2 for constant 1C
cycling; type 3 for discharging at six different current levels, allowing
for the evaluation of battery performance under varying discharge
rates; types 4 to 6 employ different cutoff voltages to simulate user-
determined battery usage. These tests explore the impact of variations
in charging and discharging voltage thresholds on battery performance
and degradation.

NASA datasets [55] are provided with two well-known studies
involving the testing of NCA type 18 650 batteries with a rated capacity
of 2Ah in 2008, and LCO type 18 650 batteries with a rated capacity of
2.1Ah in 2014, with the objective to estimate battery performance and
degradation in aerospace applications. 2008 test involved 34 NCA type
18 650 batteries [56], which were cycled at various conditions until the
SoH dropped to 80% or 70%. By investigating the effects of various
factors on battery performance and degradation, this dataset provides
valuable insights into the influence of operating conditions on battery
health.

Oxford datasets [57] offered by the University of Oxford are con-
ducted by two separate battery performance and degradation studies.
In Soft Pack batteries dataset, batteries were charged using a ‘‘CC-CV’’
(Constant Current - Constant Voltage) protocol and discharged using
the urban Artemis profile, simulating real-world driving conditions. The
aging characteristics of the batteries were measured after every 100

cycles, providing insights into battery degradation over time. Another



Journal of Energy Storage 73 (2023) 109069Y. Zou et al.
dataset used 28 NCA-type 18 650 batteries, dividing into four groups.
Each group was subjected to different cyclic aging and calendar aging
processes to assess the path dependence of battery aging [58]. This
approach allowed researchers to evaluate how different usage scenar-
ios and environmental conditions affect the rate at which batteries
degrade.

3.2. Data pre-processing

Data pre-processing is a common step in creating accurate and
reliable battery health estimation [59], as it ensures that the data used
for model development is clean and consistent, which is suitable for
machine learning algorithms.

Battery data may contain noise, outliers, or errors resulting from
measurement inaccuracies, sensor malfunctions, or other factors. Data
cleaning involves identifying and addressing these issues, typically by
filtering or smoothing the data, removing or correcting erroneous data
points, or interpolating missing values.

Different battery parameters may have different units, scales, or
ranges, which can affect the performance of modeling algorithms. Data
normalization is the process of transforming the data to a common
scale, typically by scaling the values to a specific range (e.g., 0 to 1) or
by standardizing the data [60].

Moreover, battery data may be collected at different rates or inter-
vals, depending on the application, measurement equipment, or other
factors. Data re-sampling involves adjusting the data to a consistent
sampling rate [61], either by aggregating data points (down-sampling)
or interpolating between existing data points (up-sampling).

To train and validate battery models, it is necessary to split the
data into separate subsets for training, validation, and testing. Data
partitioning involves dividing the data into these subsets in a way that
ensures a representative distribution of battery conditions, operating
scenarios, or other factors across all subsets.

3.3. Feature extraction

Raw battery data often contains a large number of variables, not
all of which may be relevant for modeling battery performance, degra-
dation, or health. Therefore, feature extraction [62] is crucial for
identifying the most relevant variables (features) or combinations of
variables that capture the essential information about the battery’s
behavior. Techniques such as principal component analysis (PCA) [63],
auto-encoders [64], or domain-specific knowledge can be employed to
achieve this.

As numerous studies have focused on extracting health features
from the battery charging or discharging process to assess the battery’s
state, some approaches involve using the incremental capacity (IC)
curve to extract features and employing a Back Propagation Neural
Network (BPNN) to predict the SoH while taking temperature into ac-
count [65]. In contrast, another approach uses the voltage from 10 min
to 80% SoC during the fast charging phase as a feature, combining it
with the number of cycles and using Long Short-Term Memory (LSTM)
networks for online capacity prediction.

Moreover, other researchers have extracted the curve of the differ-
ential temperature during charging and used timestamps of peak values
of differential temperature as health characteristics [66]. Additionally,
some researchers have combined the maximum, minimum, and average
values of voltage and current, the category number after clustering
using K-means, along with time, current variation, and current, as input
for neural networks to examine the performance of different neural
networks in predicting RUL [17].
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3.4. Lithium-ion battery health prediction methods

There are two common approaches for predicting the SoH of
lithium-ion batteries [4,25]: model-based methods and data-driven
methods. Referring to Table 2, each method is characterized by its
respective suitable and unsuitable scenarios. These approaches offer
essential perspectives on battery performance, degradation, and RUL,
serving as pivotal tools in shaping battery management strategies and
enhancing ESSs.

Model-based methods for predicting battery SoH involve the use
of electrochemical models (EM) [67], equivalent circuit models (ECM)
[68], and impedance models (IM) [63,69] to estimate SoC, SoH, and
RUL. Each of these methods has unique advantages and limitations,
which must be considered when applied to battery degradation anal-
ysis.

EMs capture the nonlinear internal characteristics of batteries by
simulating their electrochemical reactions and internal mechanical and
physical structures. While these models can be highly accurate, they
often require complex testing procedures and substantial computational
resources. Furthermore, the EM approach necessitates the selection of
a suitable model for the specific battery chemistry and configuration,
which can be challenging for large battery packs.

ECMs use simple electronic components to simulate the dynamic
behavior of batteries. Common ECMs include the internal resistance
(Rint) model and the first or second-order Thevenin model. Although
ECMs are generally easier to implement and computationally less de-
manding than EMs, they may struggle to accurately represent abnormal
behaviors caused by temperature variations and internal mechanical
deformation. High-order Thevenin models also come with increased
computational costs.

IMs are based on electrochemical impedance spectroscopy (EIS), an
experimental technique that measures changes in battery impedance
under different AC voltages. EIS can provide valuable insights into the
electrochemical mechanisms underlying electrical degradation. How-
ever, EIS testing requires specialized hardware, is time-consuming,
and is not easily performed on batteries during operation, limiting its
practical applicability.

Data-driven methods leverage machine learning, statistical analysis,
and other data-driven techniques to predict battery SoH based on his-
torical and real-time data. Data-driven methods do not require explicit
knowledge of the electrochemical processes involved in battery degra-
dation, making them more flexible and adaptable to different battery
chemistries and operating conditions. Examples of data-driven methods
include ANNs, SVR [70], GPR [71], KF [72], RFR [73], PF [74], and
other regression techniques.

SVR is a popular method for regression analysis, offering the ability
to model complex, nonlinear relationships between input variables and
the target output, such as SoH or RUL. However, its efficiency may be
compromised with excessively large datasets or if there is a lack of clear
margins between data points.

GPR is a probabilistic model that provides not only point esti-
mates for SoH and RUL, but also uncertainty estimates, which can
be useful for battery management and decision-making. Its drawback,
however, is scalability; as large datasets can considerably slow down
its computations.

KF is a recursive estimation algorithm that can efficiently incorpo-
rate new data into existing models, making it well-suited for online
battery health monitoring. Its limitation, however, is that it presumes
Gaussian noise, making it less effective in scenarios with non-Gaussian
or nonlinear dynamics.

RFR is an ensemble method that combines the predictions of multi-
ple decision trees, offering robustness against overfitting and the ability
to model complex relationships between inputs and outputs. However,
interpretability can be a challenge given the model’s ensemble nature.

PF is a sequential Monte Carlo method, which can be used to esti-

mate the state of a dynamic system, such as a battery, by propagating
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Table 2
Comparison of methods for lithium-ion battery modeling.

Features Suitable scenarios Unsuitable scenarios

Model-
based
methods

Electrochemical models
(EM)

Simulate nonlinear internal battery
characteristics by accounting for
electrochemical reactions and
internal structures.

Situations requiring high accuracy,
analyzing specific battery chemistries
and configurations.

Large battery packs, situations with
limited computational resources or
lacking complex testing facilities.

Equivalent Circuit
Models (ECM)

Use simple electronic components to
simulate dynamic battery behavior.

Applications needing quick
implementations, general battery
behavior estimations.

Precision modeling of batteries under
temperature variations or internal
mechanical deformations.

Impedance Models (IM) Measure battery impedance
variations with different AC voltages.

Understanding underlying
electrochemical mechanisms of
battery degradation.

Real-time/on-the-go monitoring due
to the requirement of specialized
hardware and time-intensive nature.

Data-
driven
methods

Support Vector
Regression (SVG)

Models complex nonlinear
relationships.

Situations with defined margins
between data points.

Extremely large datasets.

Gaussian Process
Regression (GPR)

Probabilistic model offering point
and uncertainty estimates.

Battery management requiring
decision-making based on
uncertainties.

Large dataset analysis due to
scalability issues.

Kalman Filter (KF) Recursive estimation suitable for
online health monitoring.

Applications where Gaussian noise
assumptions hold true.

Non-Gaussian or nonlinear dynamics
scenarios.

Random Forest
Regression (RFR)

Ensemble method combining multiple
decision trees.

Modeling complex input–output
relationships.

Situations demanding high
interpretability.

Particle Filter (PF) Sequential Monte Carlo method
suitable for nonlinear and
non-Gaussian systems.

Complex system analyses with
dynamic changes.

Scenarios with limited computational
power due to high resource
requirements.

Artificial Neural
Networks (ANN)

General data-driven technique for
state estimation with adaptability to
various battery chemistries and
operating conditions.

Diverse scenarios given the flexibility
of ANNs.

Situations with very limited datasets
or where interpretability is crucial.
a set of particles through time. PF is particularly useful for nonlinear
and non-Gaussian systems, where traditional filtering methods, such
as the KF, may struggle. On the flip side, PF demands substantial
computational resources, particularly when handling a large number
of particles.

Beyond these methods, and considering the extensive data col-
lection capabilities of BMS, ANNs have become a prevalent tool for
battery health assessment. They represent an additional category of
data-driven techniques dedicated to battery state estimation. A more in-
depth discussion on these methods will be provided in the subsequent
section.

4. Application of ANNs in energy storage lithium-ion battery
health management

In online applications, only battery data up to the current cycle can
be accessed, making it challenging to directly estimate the health of
lithium-ion battery. To address this issue, ANNs can be trained using
data generated from experimental tests and combined with current
online data to predict the SoH of a battery.

Various ANN architectures have been employed to predict the state
of batteries, including FNN, Extreme Learning Machine (ELM), Con-
volutional Neural Network (CNN), Recurrent Neural Network (RNN)
with LSTM and Gated Recurrent Unit (GRU) and Transformers. These
networks leverage their inherent properties to identify and transform
features within battery data into latent states or direct inputs. Each
ANN architecture offers unique advantages and caters to different
scenarios: FNNs effectively learn complex patterns, ELMs enable rapid
learning with a single hidden layer, CNNs specialize in analyzing spatial
patterns and are ideal for pattern recognition applications, while GRUs
and LSTMs handle sequential data, making them suitable for time-series
analysis and forecasting tasks. Transformers, with their self-attention
mechanism, excel in capturing long-range dependencies in sequences.
Additionally, transfer learning techniques have been employed to en-
hance the performance of these architectures by leveraging pre-trained
models or knowledge from related tasks, improving generalization and
reducing the need for large amounts of training data.
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Fig. 4. Feedforward Neural Network. The FNN consists a structured arrangement of
an input layer, multiple hidden layers, and an output layer. Through its layers and
activation functions, FNN captures intricate nonlinear relationships, processing and
transforming the input data into meaningful battery state predictions.

4.1. FNN

Illustrated in Fig. 4, FNNs consist of an input layer, which is respon-
sible for receiving the input data; an output layer, which represents the
predicted battery state; and multiple hidden layers in between. These
layers form a multi-layer network structure with activation functions
that establish the nonlinear relationship between the input data and
the state of lithium-ion batteries.

The hidden layers within the FNN enable the extraction of increas-
ingly complex features from the input data as it passes through the
network. This hierarchical learning process allows FNNs to capture
intricate patterns and relationships in the battery data. the computation
of FNN can be depicted as

𝐹 (𝐱) = 𝑜𝐿(𝐖𝐋𝑜𝐿−1(𝐖𝐋−𝟏 ⋯ 𝑜1(𝐖𝟏𝐱 + 𝐛1)⋯ + 𝐛𝐿−1) + 𝐛𝐿), (3)

where 𝐱 represents the input vector of features, 𝐿 represents the
number of layers, 𝐖𝑙 represents the weight matrix between layer 𝑙 − 1
and 𝑙, 𝑜𝑙 represents the activation function at layer 𝑙, and 𝐛𝑙 represents
the bias at layer 𝑙.
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The loss of the FNN is provided by the cost function:

𝐶(𝐲𝐢, 𝑓 (𝐱𝐢)) (4)

where 𝐱𝐢 represents the input of a specific sample, 𝐲𝐢 represents the
target output, and 𝐶 represent the loss function to evaluate the differ-
ence between the output from FNN and the target output. The train
the model, FNNs typically employ gradient-based back propagation
algorithms to train the weights and biases within the network. This
training process allows the loss function to converge continuously,
improving the accuracy of the model.

Researchers have used custom-designed FNNs to predict SoH with
high reliability in various scenarios, such as constant voltage con-
stant current mode and random current mode. A FNN is developed
to estimate complete charging curves using small portions of charging
curves as inputs [75]. In another approach, FNNs are used to predict
the battery’s capacity degradation trajectory based on data from a
single cycle, demonstrating promising results with an error of just
8.6% over the first 100 cycles [76]. Additionally, an FNN is employed
to establish the relationship between SoH, estimated capacity, and
temperature [77], suggesting that FNNs can effectively model complex
relationships between various input data and the state of lithium-ion
batteries, even with limited information.

4.2. ELM

ELM [78] is a type of neural network that consists of only a
single hidden layer. Unlike traditional neural networks, ELMs do not
require an gradient-based backpropagation training process to update
the weights and biases. Instead, the weight values and bias values for
the hidden layer are randomly assigned during the training phase.

The output layer of an ELM does not contain any bias values.
Instead, the output layer weight values are calculated by solving a
linear system, which can often be done using standard linear algebra
techniques. This approach makes ELMs faster to train than traditional
neural networks, as the computational complexity is reduced. The
output function of ELM can be expressed as

𝐹𝐿(𝐱𝑗 ) =
𝑁
∑

𝑖=1
𝛽𝑖𝑔(𝐰𝑖 ⋅ 𝐱𝑗 + 𝐛𝑖), 𝑗 = 1, 2,… , 𝑁, (5)

where 𝑁 represents the sample number, 𝛽𝑖 represents the weight vector
connecting the 𝑖th hidden layer neuron, and 𝐰𝑖 represents the weight
vector between the 𝑖th hidden layer neuron and the output.

ELMs have been shown to provide good generalization performance
in various applications, including SoH prediction for lithium-ion bat-
teries. While their simpler architecture may not always yield the same
level of accuracy as deeper neural networks, ELMs can still be an
efficient and effective option for certain prediction tasks, particularly
when computational resources or training time are limited.

To enhance the performance of ELM and prevent it from getting
trapped in local optima, an improved Sparrow Search Algorithm (ISSA)
optimized ELM network is developed for predicting the SoH of lithium-
ion batteries under random load conditions [79]. In addition, a Salp
Swarm Algorithm (SSA) is utilized for hyperparameter search in the
ELM, leading to the development of an improved ELM-based SoC esti-
mation model [80]. A novel feature extraction technique for obtaining
features characterizing battery aging is also developed, along with an
improved ELM algorithm [81].

4.3. CNN

CNNs, as shown in Fig. 5, are known for their powerful repre-
sentation learning capabilities and have found widespread application
in areas such as image recognition and object detection [82]. The
architecture of a CNN typically consists of several key components,
including convolutional layers, pooling layers, and fully connected
layers.
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Fig. 5. Convolutional Neural Network. CNNs employ convolutional layers to detect
specific patterns in battery health data using filters. Pooling layers subsequently com-
press this data, preserving crucial health indicators. Fully connected layers synthesize
these insights, allowing the network to derive a comprehensive understanding of the
battery’s health state from various features.

Convolutional layers are responsible for detecting local features in
the input data by applying a series of filters or kernels to the input.
This process enables the CNN to learn various patterns within the
data. Pooling layers are used to reduce the spatial dimensions of the
input data while retaining important information. This downsampling
process helps to reduce the computational complexity of the network
and control overfitting.

Fully connected layers are used to combine the features learned by
the previous layers, enabling the network to make decisions based on
a global understanding of the input data. The fully connected layer
combines the extracted features to form a nonlinear output, allowing
the network to learn complex relationships between different features.

Finally, the loss function calculates the error between the predicted
output and the true output, quantifying the performance of the CNN. In
the CNN training process, the parameters 𝛩 are learned for a composite
nonlinear function 𝐹 (𝑥|𝛩), connecting the input 𝐱 to the corresponding
output 𝐲:

𝐲 = 𝐹 (𝐱 ∣ 𝛩) = 𝑓𝐿
(

⋯ 𝑓2
(

𝑓1
(

𝐱 ∣ 𝜃1
)

∣ 𝜃2
)

∣ 𝜃𝐿
)

, (6)

where each operation 𝐹𝑙(⋅|𝛩𝑙) in the network is associated with the
convolutional layer, pooling layer and their respective parameters 𝛩.
The loss value is used to update the network’s weights through back
propagation, aiming to minimize the overall error and improve the
network’s performance on the task at hand.

In the context of battery health prediction, researchers can leverage
the strong feature extraction capabilities of CNNs to analyze time
series data, such as voltage, current, and temperature, and extract
relevant features that help predict the state of lithium-ion batteries.
A study presents an end-to-end prognostic framework for SoH esti-
mation and RUL prediction, employing a hybrid ANN consisting of
a one-dimensional CNN and LSTM to capture hierarchical features
and temporal dependencies in battery degradation variables [83]. Ad-
dressing the limitations of traditional physical models in describing
complex battery behavior, a multi-scale deep CNN offers enhanced fea-
ture extraction capabilities [84]. Additionally, a quantitative analysis of
degradation patterns in lithium batteries reveals loss of active matter,
lithium ion loss, and conductivity loss; by feeding this information into
a CNN-LSTM prediction model, better results are obtained in analyzing
the internal mechanistic effects of low temperature and near-adiabatic
conditions [85].

Temporal Convolutional Networks (TCN) have also emerged as a
development in the domain of CNN. For tasks that involve sequential
data, TCNs utilize a convolutional approach, ensuring fixed-sized recep-
tive fields and offering several advantages such as parallelism during
training and more flexible memory size. [86] proposes a TCN network
leveraging a convolutional structure for precise SOH monitoring and
RUL prediction of lithium batteries, improving upon traditional models
by addressing local regeneration phenomena and integrating Empirical
Mode Decomposition (EMD) to enhance prediction accuracy. Following
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Fig. 6. Recurrent Neural Network. RNNs uniquely model temporal relationships in
battery health data through hidden states, maintaining a running context of the input
data over sequential time steps. This ability enables them to forecast battery states,
like the SoH for upcoming cycles, by learning and adjusting weights during training to
minimize discrepancies between predicted outputs and actual values.

a similar vein, [87] develops a generic TCN framework designed to pro-
cess raw sensor data for SOH estimation of lithium-ion batteries across
different aging scenarios, optimized using Bayesian hyperparameter
tuning and validated via stratified K-Fold cross-validation, eliminating
the need for additional feature engineering, making it suitable for
on-board operations and BMS applications; the work also delves into
the influence of partial load cycles from various SOC ranges on the
accuracy of the SOH estimation.

4.4. RNN

RNNs [88] are designed to have time series memory, which makes
them especially well-suited for processing time series data. As shown
in Fig. 6, their autoregressive architecture enables them to maintain
a hidden state that can capture information from previous time steps,
allowing them to effectively model temporal dependencies in the data.
This characteristic is particularly useful when working with data that
has a sequential nature, such as time series data from battery tests and
operation.

In an RNN architecture, the hidden state 𝐡𝑡 at each time step t is
crucial for capturing the temporal dependencies within the sequence.
This hidden state is passed to the subsequent 𝑡 + 1 time step with the
input 𝑥𝑡+1. By using the hidden state 𝐡𝑡 with the input 𝑥𝑡+1, the RNN
block computes a new hidden state 𝐡𝑡+1 and an output 𝐲𝑡+1 for the
current time step. This process is repeated for each time step within
the sequence, allowing the RNN to maintain a running context of the
input data and to better model the temporal relationships between time
steps.

The hidden state,

𝐡𝑡 = 𝜙(𝐱𝑡𝑊 𝑇
𝑖ℎ + 𝐛𝑖ℎ + 𝐡𝑡−1𝑊 𝑇

ℎℎ + 𝐛ℎℎ), (7)

is updated using an activation function 𝜙(), such as a hyperbolic tangent
(tanh) or a sigmoid function, which allows the network to learn non-
linear patterns in the data. The weights and biases within the RNN are
learned during the training process, where the network is optimized
to minimize a loss function that measures the difference between the
predicted outputs and the actual target values, such as SoH of next
cycle.

One popular variant of the RNN is the LSTM network [89], which is
specifically designed to address the vanishing gradient problem that can
occur in traditional RNNs. This issue can make it difficult for RNNs to
learn long-term dependencies in the data. As presented in Fig. 7, LSTMs
incorporate special gating mechanisms that allow them to better retain
information over longer sequences, making them a popular choice for
many time series prediction tasks, including battery health estimation.
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Fig. 7. Long Short-Term Memory Cell. LSTMs are engineered with unique gates, like
the forget gate, which smartly filters past information, enhancing training stability.
Additionally, the input and output gates collaboratively manage the assimilation of
new data and the relay of pertinent information, optimizing the cell’s capability to
recognize and retain long-term dependencies in battery health data.

For input 𝐱𝑡, the LSTM cell computes the following functions:

𝐢𝑡 = 𝜎
(

𝑊𝑖𝑖𝐱𝑡 + 𝐛𝑖𝑖 +𝑊ℎ𝑖𝐡𝑡−1 + 𝐛ℎ𝑖
)

,
𝐟𝑡 = 𝜎

(

𝑊𝑖𝑓 𝐱𝑡 + 𝐛𝑖𝑓 +𝑊ℎ𝑓𝐡𝑡−1 + 𝐛ℎ𝑓
)

,
𝐠𝑡 = tanh

(

𝑊𝑖𝑔𝐱𝑡 + 𝐛𝑖𝑔 +𝑊ℎ𝑔𝐡𝑡−1 + 𝐛ℎ𝑔
)

,
𝐨𝑡 = 𝜎

(

𝑊𝑖𝑜𝐱𝑡 + 𝐛𝑖𝑜 +𝑊ℎ𝑜𝐡𝑡−1 + 𝐛ℎ𝑜
)

,
𝐜𝑡 = 𝐟𝑡 ⊙ 𝐜𝑡−1 + 𝐢𝑡 ⊙ 𝐠𝑡,
𝐡𝑡 = 𝐨𝑡 ⊙ tanh

(

𝐜𝑡
)

,

(8)

where 𝐢𝑡, 𝐟𝑡, 𝐜𝑡, 𝐨𝑡, represents the input, forget, cell, and output gates,
respectively. 𝜎 represent the sigmoid function, and ⊙ represent the
Hadamard product.

The forget gate in an LSTM block determines which information
from the previous hidden state should be discarded or retained. By
selectively forgetting information, the LSTM can better focus on the
relevant inputs and maintain a more stable gradient during the training
process.

The input gate controls the flow of new information into the cell
state, ensuring that only relevant information is added to the cell state.
The output gate then determines the information that should be passed
to the next block, based on the updated cell state and the input data.

Several studies have demonstrated the effectiveness of LSTMs in pre-
dicting the SoH and RUL of lithium-ion batteries. Researchers demon-
strate the efficiency and effectiveness of battery monitoring by ac-
curately predicting the lifespan of a specified lithium-ion battery us-
ing an LSTM model [90]. For volatile battery data, [91] employs
a LSTM-based neural network to understand the battery’s electrical
behavior and subsequently adapt virtual battery experiments to ac-
tual load conditions. In a different approach, a novel SoH estimation
method employs improved LSTM and health indicators extracted from
the charging–discharging process, selecting high-correlation parame-
ters with Pearson coefficient, reducing computational burden with
neighborhood component analysis, and optimizing hyperparameters in
LSTM models using differential evolution grey wolf optimizer [92].

For better SoH estimation, an improved LSTM-based data-driven
method utilizes particle swarm optimization for network topology esti-
mation, selects four health indicators, employs grey relational analysis
to quantify their correlations with battery SoH, and establishes an LSTM
model to map the relationship [93]. A hybrid ALF-PF-LSTM approach
accurately predicts the RUL of LIBs, with experimental results demon-
strating improved prediction performance, robustness, and superiority
over popular PF-based algorithms [94].

A study evaluates the impact of three methods for characterizing
future operating conditions in probability-based prognostic algorithms,
specifically LSTM, Markov Chain, and constant usage, considering their
influence on the system’s RUL evaluation [95]. To reduce the require-
ment of degradation data for early RUL prediction, an ADLSTM-MC
algorithm is proposed, combining adaptive dropout long short-term
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̃

Fig. 8. Gated Recurrent Unit Cell. GRUs employ a more streamlined architecture than
LSTMs with only two crucial gates: the update and reset gates. These gates jointly
manage information retention and influence from previous states, enabling GRUs to
adeptly capture extended temporal patterns in battery health data, all while ensuring
computational efficiency.

memory (optimized by Bayesian optimization) and Monte Carlo sim-
ulation for accurate RUL prediction while accounting for uncertainties
in the results [96].

GRUs, as shown in Fig. 8, are another popular RNN architecture.
Like LSTMs, GRUs are designed to address the vanishing gradient
problem in traditional RNNs, also have gating mechanisms that help
in controlling the flow of information through the network. However,
GRUs have a simplified architecture compared to LSTMs, as they only
have two gates: an update gate and a reset gate. A GRU cell computes
the following functions:

𝐫𝑡 = 𝜎(𝑊𝑖𝑟𝐱𝑡 + 𝐛𝑖𝑟 +𝑊ℎ𝑟𝐡(𝑡−1) + 𝐛ℎ𝑟),
𝐳𝑡 = 𝜎(𝑊𝑖𝑧𝐱𝑡 + 𝐛𝑖𝑧 +𝑊ℎ𝑧𝐡(𝑡−1) + 𝐛ℎ𝑧),
𝐡𝑡 = tanh(𝑊𝑖𝑛𝐱𝑡 + 𝐛𝑖𝑛 + 𝐫𝑡 ⊙ (𝑊ℎ𝑛𝐡(𝑡−1) + 𝐛ℎ𝑛)),
𝐡𝑡 = (1 − 𝐳𝑡)⊙ �̃�𝑡 + 𝐳𝑡 ⊙ 𝐡𝑡−1,

(9)

where 𝐫𝑡, 𝐳𝑡, �̃�𝑡 represents the reset, update, and new gates, respec-
tively. 𝜎 represent the sigmoid function, and ⊙ represent the Hadamard
product.

The update gate controls the extent to which previous hidden states
are retained, while the reset gate controls the influence of the previ-
ous hidden state on the current hidden state. This gating mechanism
allows GRUs to better capture long-range dependencies in time series
data while maintaining a simpler and more computationally efficient
structure than LSTMs.

In the context of battery state estimation, researchers have found
that GRUs can provide comparable performance to LSTMs in certain
scenarios while requiring fewer model parameters and computational
resources. As a result, GRUs have become a popular alternative to
LSTMs in many applications, including the prediction of battery health
and lifespan.

One study proposes a novel RUL prediction approach that employs a
FNN for the low-frequency part and a self-designed improved Res2Net-
Bidirectional Gated Recurrent Unit-Fully Connected (IRes2Net-BiGRU-
FC) for the high-frequency part [97]. In contrast, another study suggests
an approach utilizing a hybrid neural network, GRU-CNN, to estimate
SoH based on CC charging curves, as this method can learn shared
information and time dependencies of the charging curve, captur-
ing capacity-related insights from voltage, current, and temperature
data [98]. Optimized through a momentum gradient algorithm for
faster convergence, a GRU-RNN model is constructed for SoC estima-
tion using voltage and current inputs [99].

Moreover, a comparative study evaluates the performance of var-
ious RNN architectures, such as simple RNN, LSTM with GRU, and
LSTM with a bidirectional structure, in SoH estimation. The results
show that LSTM and bidirectional LSTM models tend to exhibit greater
insensitivity to charge–discharge conditions and higher accuracy in
predicting SoH.
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Fig. 9. The Transformer encoder–decoder. The Transformer architecture, introduced
in the seminal paper ‘‘Attention Is All You Need’’, [100] revolutionized sequence-to-
sequence tasks with its unique self-attention mechanism. The encoder ingests the input
sequence, processing it through stacked layers of attention and feed-forward networks,
while the decoder generates the output, utilizing both its own layers and the encoder’s
representations, facilitating intricate battery health state interpretations and predictions.

4.5. Transformer

As shown in Fig. 9, Transformers [100] are a type of encoder–
decoder architecture initially designed for natural language processing
tasks. They have gained popularity due to their ability to handle long-
range dependencies and their scalability, which is achieved through
the use of self-attention mechanisms. The multi-head self-attention
mechanism allows the Transformer to consider multiple positions of
the input sequence simultaneously, making it highly parallelizable and
efficient in capturing long-range dependencies. This is in contrast to
traditional RNN-based architectures, which process sequences sequen-
tially and may struggle with long-range dependencies due to vanishing
or exploding gradients.

As a crucial component in the Transformer architecture, the self-
attention function is computed on a collection of queries simultane-
ously, consolidated into a matrix 𝑄. Correspondingly, the keys and
values are also combined into matrices 𝐾 and 𝑉 . The resulting output
matrix is calculated as follows:

Attention(𝑄,𝐾, 𝑉 ) = sof tmax(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 , (10)

where
√

𝑑𝑘 represents the scaling factor.
A study introduces a Temporal Transformer Network (TTN) for

lithium-ion battery RUL prediction, integrating self-attention, denoising
autoencoder for noise reduction, and a temporal encoding layer to
incorporate operating time in the input [101]. In contrast, another
study suggests a hybrid battery health prediction method that merges
Transformer and online correction, employing multi-scale health fea-
tures and dimension reduction, while integrating a specialized filter
layer in the Transformer for managing diverse features [102].

A unique approach using a Transformer neural network and an
adaptive observer for battery SoC estimation is presented, capitalizing
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on richer information from input sequences and rectifying learning fluc-
tuations for enhanced accuracy [103]. Lastly, a novel SoH estimation
method is introduced, utilizing data pre-processing techniques and a
CNN-Transformer framework, selecting and reducing features through
PCC and PCA, followed by min–max scaling, before being input into
the CNN-Transformer model [104].

4.6. Transfer learning

Once the neural network has been trained on a set of battery data,
its learned knowledge can be transferred to evaluate the health status
of different batteries under various operating conditions. This enables
the trained ANN to generate more accurate predictions by leveraging
the general rules obtained during training and applying them to the
specific operating data of the battery under evaluation.

In [105], an LSTM network-based transfer learning model is in-
troduced for adaptive online capacity prediction under fast charg-
ing, featuring a novel voltage attribute enabling 80% SoC in roughly
10 min, integrating voltage features and cycle numbers through a slid-
ing window, and optimizing hyperparameters with cross-validation and
fine-tuning as new battery data becomes available to address cell-to-
cell differences. [106] employs early battery aging data for degradation
pattern recognition and transfer learning to improve SoH estimation
accuracy, extracting four features from discharge capacity curves for
this purpose.

A novel transfer learning approach using cross-manifold embed-
ding [107] tackles battery characteristic differences and model mi-
gration challenges by leveraging minimal target battery data and in-
corporating information from related tasks, allowing for small sample
SoH estimation and better generalization, overcoming overfitting issues
faced by traditional machine learning methods. [108] introduces a deep
CNN based method for estimating the capacity of lithium-ion batteries
using a limited dataset by integrating transfer learning and ensemble
learning, demonstrating superior accuracy and robustness compared to
other data-driven approaches. In addition, a Controllable Deep Transfer
Learning (CDTL) network [109] uses controllable Multiple Domain
Adaptation (MDA) with adaptive regularization to enable short and
long-term SoC estimations at early degradation stages, enhancing target
LSTM generalizability by transferring knowledge between target and
historical source cells while minimizing negative transfer learning and
ensuring controllability and convergence.

A new transfer learning strategy combined with cycle life predic-
tion technology [110] addresses accurate long-term aging trajectory
prediction for LFP lithium-ion batteries in a two-stage aging process,
employing feature extraction, deep learning, Bayesian model migra-
tion, and incorporating prior cycle life information for precise and
uncertain quantification of aging trajectories with limited data. In
contrast, [111] introduces an accurate SoC estimation algorithm for
lithium-ion batteries using LSTM and transfer learning, allowing knowl-
edge sharing across batteries with less training data and integrating a
rolling learning method to update model parameters as battery capacity
degrades, providing precise estimation across diverse aging states and
temperatures.

4.7. Ensemble of ANNs with other machine learning

ANNs have been effectively combined with other SoH estimation
methods in several studies, resulting in improved performance.

A framework integrating a FNN with knowledge transfer and ARIMA
forecasting is proposed, using Pearson correlation coefficient and
LASSO regression for efficient feature selection and applying Savitzky–
Golay filtering for noise reduction, achieving high estimation accuracy
(96%) with limited training data (25%) [112]; however, additional
training with more data shows no significant improvement. In contrast,
another study [113] characterizes LIHC dynamics using a first-order RC
equivalent circuit model and employs a VFF-RLS algorithm to update
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model parameters adaptively, while an LSTM neural network model
corrects OCV to estimate SoC, RUE, and SOE under dynamic conditions
across various temperatures.

A multi-feature fusion model [114] combines SVR and long short-
term memory network (LSTM) to estimate battery SoH by extracting
feature parameters from the constant voltage charging stage, construct-
ing primary SVR models, and employing LSTM as a secondary learner
to improve multi-feature fusion performance. Also, a novel parameter
identification method [115] combines a 1D CNN with a genetic al-
gorithm to learn the dynamics between input current and simulated
voltage, enabling the recommendation of highly probable parameter
candidates for building an electrochemical model.

Neural network and ordinary differential equation-based models
[116] are utilized to forecast battery SoH and predict end of life, with
discoveries and predictions made using various neural ODEs compared
against established RNN models such as LSTM and GRU. A hybrid
data science model [117] combines empirical mode decomposition,
grey relational analysis, and deep RNNs for lithium-ion battery RUL
prediction, using EMD and GRA for feature extraction and various deep
RNNs for SoH and RUL forecasting, with Bayesian optimization for
hyperparameter tuning.

[118] presents a high-precision SOC estimation approach using
an LSTM neural network with attention mechanism, optimized by
a Bayesian optimizer, while leveraging the isolation forest anomaly
detection for data preprocessing and the sliding window method to
enhance time-series data accuracy. In another approach, a temperature-
compensated second-order equivalent circuit model [119] is developed,
using a particle swarm optimization algorithm for adaptive parameter
identification, and an LSTM for accurate battery capacity prediction,
with dynamically updated model parameters and capacity estimates
inputted to a square root cubature KF for SoC estimation.

5. Summary

Lithium-ion battery health estimation is of critical importance in
various applications, including BESSs, EVs, and portable devices. En-
ergy storage lithium-ion batteries differ inherently from power and
customer battery application scenarios in terms of reliability, efficiency
and cycle life, making their health state estimation a topic of interest
for many researchers.

Degradation of lithium-ion batteries is a complex process, involving
various mechanisms that can lead to changes in capacity, impedance,
and cycling performance. Addressing the challenges of battery health
management requires a thorough understanding of these degradation
mechanisms and the development of reliable estimation models.

Deep learning has emerged as a powerful tool for lithium-ion battery
health estimation, offering advantages over traditional methods due
to its ability to learn complex relationships between input data and
health indicators. Neural network architectures, such as FNNs, CNNs,
RNNs, LSTMs, GRUs, and Transformers have been recently used in
data-driven battery health estimation models with promising results.
These neural network-based models, coupled with advanced machine
learning techniques, can be employed for energy storage lithium-ion
battery health estimation tasks, potentially improving the performance
of estimation models.

We believe that employing ANNs in battery health assessment and
prediction can help address several existing challenges, warranting
further study to unlock their full potential:

1. As lithium-ion battery manufacturing processes and material
technologies advance, leading to evolving operating temperature
ranges, cycle times, and charging and discharging rules, ANNs
can play a crucial role in extracting more effective features
representing the degradation state, enhancing battery health
monitoring.
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2. Long-life energy storage lithium-ion batteries demand data-
driven models with strong generalization capabilities. ANNs can
help develop models that, even with limited experimental data,
can be applied to online health prediction for batteries with
varying aging paths.

3. In BESSs supporting renewable energy power generation equip-
ment, which consist of numerous battery cells, ANNs can facil-
itate the planning of long-term, reliable operation of the entire
BESS through early prediction of battery cell life, addressing a
critical task for future BESSs.

4. Applying contrast learning techniques in conjunction with ANNs
can enforce that similar instances have similar representations
while dissimilar instances have distinct representations in the
latent space. This approach holds promise for more accurate
fault detection and diagnosis by distinguishing between healthy
and faulty battery states, improving lithium-ion battery health
management.
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