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Shape optimization of corrugated tube using B-spline curve for
convective heat transfer enhancement based on machine learning
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A significant way to achieve energy saving and emission reduction is to optimize the design of heat transfer devices. As is widely
applied in industry, a corrugated tube constructed by B-spline curve is numerically investigated and the profile is optimized,
using a surrogate model with considerations of performance evaluation criterion (PEC) as single objective or minimum flow
resistance (f) and maximum Nusselt number (Nu) as multi-objective. The machine learning technique is used to determine the
candidate samples to update the surrogate model for improving the optimization efficiency and reliability, which is validated to
be effective in this paper. The optimization results show that the comprehensive performance of the corrugated tube is more
sensitive to the vertical coordinates of the control points, with the appropriate increase in the number of control points for B-
spline, and the better performance of corrugated tubes is achieved. The optimal profile corresponding to the best comprehensive
performance is a double-crest shape. With Reynolds number (Re) increased, the wave-amplitude of the first wave gradually gets
smaller, and the profile of the corrugated tube becomes smoother. With the increasing consideration of heat transfer performance
over multi-objective optimization, the optimal shape gradually changes from a double-trough to a single-trough shape. Finally,
the maximum PEC of 1.2415, 1.1845, and 1.1504 are acquired with the Re = 8000, 10000, and 12000, respectively, and the
maximum Nu increases from 358.540 to 478.821. Compared with the design with the maximum thermal performance, the best
compromise solution from multi-objective optimization is determined at Re = 8000, 10000, and 12000, showing improved flow
resistance of 83.917%, 85.465%, and 84.473%, but with sacrificed thermal performance of 36.754%, 37.088%, and 35.005%,
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1 Introduction

Energy conversion is an important issue in facilitating high-
quality economic development and promoting the reduction
of carbon dioxide emissions. Heat exchanger has a wide
range of applications in various fields of industry, especially
in supercritical CO, Brayton cycle [1,2] or chemical en-
gineering [3]. The structure of the heat exchanger tube has a
visible impact on improving the energy conversion effi-
ciency, and many techniques and methods have been con-
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ducted to analyze the effective control of heat and mass
transfer in tubes [4]. Passive heat transfer enhancement
techniques are those that do not require any external power
equipment which makes them more accessible for improving
heat transfer efficiency. Generally, different structures are
used in the destruction of the boundary layer and generating
secondary flow, which include dimples [5-8], twisted tapes
[9,10], porous inserts [11,12], and spiral tubes [13-15].
Owing to the advantages of simple structure and low cost,
many previous studies have revealed that corrugated tube is
characterized by a relatively advanced thermal performance
compared with the conventional smooth tube. Because of the
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variety of corrugated tubes in industrial applications, scho-
lars have investigated corrugations with different geome-
trical shapes. Akyildiz et al. [16] established a theoretical
model and obtained analytical solutions for the temperature
and velocity distributions in transversally corrugated pipes.
By comparing the temperature and velocity fields in tubes
with the transversally corrugated cross-section with the dif-
ferent number of peaks n, and amplitude &, they found that
the friction factor and the heat transfer rate both become
smaller with the increasing 7, and &. Mohammed et al. [17]
described a numerical investigation to study the effects of
rectangular corrugation parameters on the hydraulic-thermal
performance through transversely corrugated circular tubes.
They pointed out that both the highest Nusselt number and
friction factor are obtained in the case of lowest pitch and
highest height of corrugations, and there is an optimum PEC
at rib height e = 0.25 mm, rib pitch p, = 5 mm, rib width w, =
2 mm. Ajeel et al. [18-20] performed a comparison study on
the thermal performance of different corrugated channels,
namely, semicircle corrugated channel, trapezoidal corru-
gated channel, and straight channel. It was observed that
turbulent kinetic energy is heavily dependent on the form of
corrugation, and a maximum improvement of 12.87% on the
heat transfer rate was obtained. Ahmed et al. [21] presented
their numerical research and analyzed the effect of geome-
trical parameters for trapezoidal corrugations on the tem-
perature and velocity distributions. They observed that the
average Nusselt number was enhanced with the increasing
amplitude of corrugation due to the higher temperature
gradient near the wall caused by the mixing of fluid. Al-
Obaidi and Alhamid [22] conducted a numerical study on the
improvement of heat transfer of tubes with varying arc ring
configurations and found the highest value of PEC is more
than 1.3 under the Reynolds number of 4000. The sinusoidal-
wavy channel was analyzed numerically and experimentally
by Khoshvaght-Aliabadi et al. [23,24]. It was concluded that,
beyond the wavelength, the wave height has the most sig-
nificant effect on heat transfer characteristics. Zhang et al.
[25] proposed a circumscribed arc-wave wall tube, whose
wall is composed of two semi-circular arcs with different
radiuses and further investigated the heat transfer char-
acteristics under a pulsating flow field. They found that the
heat transfer capacity of the corrugated tube is affected by the
radius ratio i. The smaller the 7, the greater the heat transfer
is. Pethkool et al. [26] designed an experimental procedure
for understanding the augmentation of convective heat
transfer by using helically corrugated tubes, exhibiting the
maximum improvement on heat transfer rate as high as 232%
for the corrugations with the pitch-to-diameter ratio p/Dy; =
0.27, and height-to-diameter e/Dy; = 0.06. Verma et al. [27]
carried out an experimental study on the heat transfer char-
acteristics of a helically corrugated tube and found that the
maximum heat transfer efficiency is acquired when the
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corrugation depth is set as 4 mm. Hong et al. [28] designed a
new wave corrugated tube with the corrugated strips dis-
tributed sinusoidally along the circumference, showing ex-
cellent heat transfer performance due to the improved flow
mixing and the generations of multi-longitudinal vortices
induced by the corrugations. Begag et al. [29] analyzed the
enhancement of heat transfer by replacing smooth tubes with
V-shaped corrugated tubes. As a result, they succeeded in
showing that the corrugations improved the thermal perfor-
mance due to a larger heat transfer area, and a better Nusselt
number was obtained when the concave corrugated tubes had
a phase shift angle of 180°. Liao et al. [30] selected the
skewness and kurtosis of the corrugations as design para-
meters to optimize the shape of the corrugations. They pro-
posed that comprehensive performance gets better with the
decrease in skewness and kurtosis.

In the past decades, a relatively better performance is
achieved by comparing different parameter combinations.
With the development of global optimization algorithms,
numerous algorithms inspired by natural principles have
been introduced, which has provided a wide range of facil-
ities for the optimization of heat transfer devices, such as
genetic algorithm [31-35], simulated annealing algorithm
[36-40], particle swarm algorithm [41-45], and so on.
However, due to the incremental complexity of physical
problems and the constraint of computational resources, how
establishing the mathematical correlations between the per-
formance indicators and the design parameters has become a
critical problem that limits the application of advanced op-
timization algorithms. The most popular method is to build a
surrogate model to approximate the relationship between the
inputs and the outputs, such as response surface model
(RSM), radial basis function (RBF), and artificial neural
network (ANN), which has the advantages of high optimi-
zation efficiency and ease of operation. Han et al. [46,47]
performed an optimization for corrugated tubes inserted with
multi-channel twisted tape. An RSM and genetic algorithm
are used to optimize the design variables. Wang et al. [48—50]
established an RSM to optimize a double pipe heat ex-
changer with an outward helically corrugated tube. The
model is validated by comparing the predicted value with the
experimental data, and the maximum error is less than 20%.
Yu et al. [51] adopted 25 design points obtained by the
central composite design to construct a response surface for
the optimization of shell and tube heat exchangers with si-
nusoidal wavy tape. Milani Shirvan et al. [52] also used an
RSM to optimize the heat exchanger with the corrugated
tubes. Four effective parameters of the tube structure were
chosen to obtain the best performance. Grabski and Kotod-
ziej [53] established an RBF to analyze the thermal-hy-
draulic performance in an internally corrugated tube whose
cross-section is described by a cosine function. Moreover,
Yarmohammadi et al. [54] employed an ANN to build a
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correlation between the heat transfer coefficient and design
variables. Combined with the optimization algorithm, R-
404A evaporation inside corrugated tubes is optimized.
Moya-Rico et al. [55] presented an ANN for predicting the
heat transfer characteristics of corrugated tubes and found that the
results are in good agreement with the experimental results
when two hidden layers have 15 and 21 nodes, respectively.

The above literature review shows that the structure of
corrugations has an obvious improvement for the heat
transfer and flow performance in the tubes. Scholars have
proposed various corrugation designs with excellent perfor-
mance. However, when making improvements for the cor-
rugated tubes, scholars are used to determining the profile of
corrugation as a certain shape firstly, regular shape or the
deformation of the regular shape, which leads to many
curves that do not satisfy the design form are not considered.
And then they perform their optimizations only for the
structural parameter which leads to the optimization range is
much narrower. Additionally, some surrogate models cannot
accurately characterize problems with high nonlinearity, and
is powerless in handling problems with many design vari-
ables, which causes an inaccuracy acquisition of the best
profile as the optimization algorithm is used.

B-spline curve is a curve generation method with the
characteristics of simple generation and flexible adjustment,
which can represent most of curves, regular or irregular
curves, only by the position of the control points and the
number of points. To find the best curve for the profile of the
corrugated tube without any shape limitation, in this paper,
B-spline curve is employed to determine the corrugation
shape. The optimal profile and the effect of the control point
number on the optimal profile are investigated. Meanwhile,
the variation of the optimal profile as the Reynolds number
increases is explored. A further multi-objective objective
optimization is performed for the best compromise solution
under the different heat transfer and flow resistance re-
quirements. In order to solve the problems such as undesir-
able optimization results due to inaccurate predictions of the
surrogates, a surrogate based on machine learning technique
(SML) is constructed, and the optimization results are vali-
dated with the solutions obtained by directly coupling the
CFD solver and genetic algorithm. The optimization method
employed in the paper can be used in other thermal systems
and the optimization results can be used to guide the pro-
duction of the corrugated tube to improve energy conversion
efficiency.

2 Computational model and solution strategy

2.1 Physical problem description

The geometry structure of the corrugated tube studied in the
present numerical simulation is shown in Figure 1. The
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corrugation units are periodically arranged in the test section
of the tube in order to improve the heat transfer rate, and a
total of N, = 40 periodic units is applied in the numerical
model, and the length of the unit is L,, = 10 mm. Two smooth
straight tubes with the lengths of Z;, = 200 mm and L, =
400 mm are arranged on the entry and outflow sections to
eliminate the entrance effect and reversed flow in the outlet
respectively. Accordingly, the total length of the domain is
L = 1000 mm, the radius of the tube is , = 5 mm. For the
convenience of the present study, the tube is simplified to a
2D-axisymmetric model, so the shape of the wave structure
is determined by a curve.

B-spline is a typical method of curve generation used in
computer-aided design owing to its local modifiability and
flexible control property, which is automatically generated
by several control points. The curve is unique under the same
control points, and P(u) is defined as a polynomial spline
function of kth degree given by [56]

P(u) = ZPﬁi,k(u), (1)

where u is an independent value, and any point on the curve
is expressed by modifying it. k is the degree of the curve, and
generally, a higher £ means a smoother curve, but a longer
computation time. In general, the degree k is set to 3. P; is the
set of n control points and B, ,(u) is the B-spline basis
function of degree k and defined as

L ifu, <u<u;,,

B i,O(u) = 2)

0, otherwise,

(u— “i)Bi,k—l(“) " (UHHF“)B,‘H,k—l(“)
Uprp —U; ’

B, j(u) = 3)

Ujrk+1~ Ujv
u; as the ith knot is determined by

0, 0<i<k+1,
k+1<i<n-—1, 4)
n—1<i<n+p.

u,=1i—k,
n—k,

It can be seen from eqs. (1)—(4) that the generation of B-
spline curve is only determined by the positions and the
number of control points when the degree k is determined.
Therefore, the number of control points as well as the co-
ordinates is selected as research parameters for determining
the optimal profile of the corrugated tubes. Figure 1(c) gives
exemplary cases of the corrugated tube constructed by
B-spline curve of degree k= 3 and control points n =3, n=>5,
n="17.

2.2 Governing equations and boundary conditions

In this study, water is chosen as the working fluid, and the
flow is assumed to be steady, turbulent, Newtonian, and
without viscous dissipation, whose physical properties are
unchanged with temperature. Given that the velocity is in the
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Figure 1 Schematic description of the geometry structure. (a) Physical model for corrugated tube; (b) calculated domain; (c) B-spline curve and control

points.

range of 0.8—1.2 m/s and the Reynolds number is in the range
of 8000-12000, the SST k-w turbulence model is employed
for the fluid region. The governing equations include the
continuity, Reynolds averaged Navier-Stokes, energy, and
turbulence model equations. In tensor form, the continuity,
Navier-Stokes, and energy equations are [57]

65;’ -0, (5)
aixj(p” “ = ax, ai [ZZ;+Z_:]

§ﬂ2§'5 g (). (6)
6‘3 (pu,C,T) = ai [keffg—fi]. 7

The Reynolds stresses must be modeled to close eq. (6).
The SST k-w turbulence model developed from the standard
k- model is suitable to use at low Reynolds numbers, which
is adopted to ensure an accurate prediction of the near-wall
conditions [58]. The details of the model are defined as

0 0 ok
e lohe) = gl i g+ G e ®
0 0 0
a—m(pwu,«)=a—%[u+§;]a“j +G,~Y,+D,, ©

where oy, g,, and g, are the turbulent Prandtl numbers for k&
and o and the turbulent viscosity, respectively.

In this study, the calculations are numerically performed
based on the finite volume method [59] by the platform,
ANSYS Fluent 19.0. The second upwind scheme is em-
ployed to solve the intermediate point values of the algebraic
equations after the discretization process. The pressure-ve-
locity coupling field is obtained by the Semi-implicit tech-
nique for pressure-linked equations (SIMPLE) algorithm.
The solution process is terminated and considered to be
converged when the standardized residuals for the con-
tinuum equations, momentum equations, and energy equa-
tions are less than 10°°, 10, and 10 %, respectively.

The boundary conditions defined at the inlet are uniform
velocity u;, = 0.8—1.2 m/s and temperature T;, = 300 K, with
a turbulent intensity of / = 5%. The pressure gauge of the
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outlet is set as P, = 0, defining the backflow turbulent in-
tensity as /= 5%. A no-slip boundary condition is applied to
the convective heat transfer surfaces as the shear condition,
and the temperature of which is fixed at T, = 333.15 K.

2.3 Data reduction

The velocity and temperature fields can be obtained by nu-
merical analysis. The friction factor (f) of the corrugated
structure section is employed to characterize the hydraulic
performance and it can be calculated from [60]

__Op 2r,
S N e (10)
The corresponding Reynolds number (Re) is
_ 2psuinry
Re e (11)

The Nusselt numbers (Nu) are chosen to evaluate the
thermal performance, which can be calculated as [61]

Nu =20 (12)

where & is the heat transfer coefficient, which can be cal-
culated as

T 3
o
J uTrdr
T, =3 (14)
Iourdr
0

The performance evaluation criterion PEC is employed to
evaluate the comprehensive performance of the heat transfer
and flow resistance [62]:

C= Nu/ Nitgmoom

B (f/stmooth )1/3 . (15)

2.4 Grid independence and model validation

Due to the simple structure of the 2D axisymmetric model
for corrugated tubes, a structural quadrilateral mapping grid
is employed in this paper. Figure 2 gives the grid schematic,

Ty
T

[T
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and four randomly generated B-spline curves are used to
confirm the applicability of the meshing method to arbitrary
conditions. The grid in the corrugations is refined to capture
local features, and the boundary layer grid is generated near
the wall to ensure that the value of y* < 1. To improve the
computational efficiency while ensuring the accuracy of the
numerical process, the analysis of grid independence is
employed to determine the minimum number of grids. With
the corrugated tube of the same radius as the analysis object,
five different grid systems are generated to check the grid
independence namely, 20000, 38000, 60000, 84000, and
107000. The deviations of Nu and friction factor values are
less than 0.1% when the number of grids exceeds 84000.
Therefore, to save computational time, a mesh number of
84000 is selected for the simulations in this study.

Numerical validations are conducted according to the
empirical formula for smooth tubes given in ref. [63]. Under
the same working conditions, the Nusselt number and fric-
tion factor are chosen as comparative parameters with the
egs. (16) and (17), which are considered feasible in the range
of Re from 2300 to 10°. Subsequently, the results of the
numerical calculation in the corrugated tube are compared
with the experimental results of Hu et al. [64], which adopts
air as the working fluid. Figure 3 shows that the numerical
solutions are in good agreement with the theoretical results
and the experimental results which prove that the numerical
method used in this paper is accurate and effective.

2/3

(f/8)(Re—1000)Pr; | (d
Nutheo = 2/3_ 1+ 7 Ci,
1+ 127778 (Pr; 1)[ 16)
P}"f 0.01
(7]
Fineo = (1.821gRe — 1.64) 2. (17)

3 Surrogate and optimization method

3.1 Surrogate model based on machine learning

Surrogate model based on machine learning (SML) provides

T

T

T

Figure 2 Mesh generation for corrugated tube.
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Figure 3 Validation of simulated results.

a strategy for improving the surrogate model to guide the
efficient optimization of an unknown black-box function.
The algorithm functions by building a rough surrogate model
which is updated by adding candidate samples until the best
value is found with no improvements. Compared with tra-
ditional surrogates, on the one hand, SML gives the desired
results with fewer samples, which improves the optimization
efficiency. On the other hand, continuous exploration helps
us to find the neglected local features and reduces the impact
of prediction errors on optimization results.

The main process of constructing SML is shown in Figure
4. Firstly, a small number of points are sampled and calcu-
lated by the above numerical method to receive the exact
performance value. An initial surrogate is established by the
parameters and performance of the samples. In this paper, the
Kriging model is chosen as the surrogate model.

When the nonlinearity of the research problem is high, the
initial model is unable to characterize the local features of the
true distribution. For ensuring the reliability of the optimi-
zation results, the initial model needs to be updated by
adding candidate points, but the selection of candidate points
is an extremely complex problem. Improper selection can
lead to less efficient optimization. A simple way to update
the surrogate is determining the candidate point at the opti-
mal value of the current surrogate, but when the optimization
proceeds to a local optimum, the model fails to update.
Another way is determining the candidate point at the
maximum predicted error of the current surrogate, but it is
difficult to the termination of the optimization process until
all the points have been calculated. An acquisition function
based on machine learning technique is required to guide the
sampling direction, which uses statistical principles to de-
termine the candidate point to improve the current model as
much as possible. In this paper, the acquisition function is
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based on the expected improvement criterion

After the candidate sample is determined, the exact per-
formance of the candidate sample is calculated by numerical
method to enrich the sample sets and update the surrogate
until the convergence condition is satisfied. In this paper, the
convergence condition is that the maximum expected im-
provement value is less than 10, and the optimal value does
not change between 20 iterations of updating process.

3.1.1 Kriging model

The Kriging model (KRG) is a widely used surrogate model
in engineering with high accuracy and flexibility [65,66]. In
statistics, KRG is also called the Gaussian process model
because it treats the objective function as a Gaussian process.
Assuming that there are N sample points and the exact values
of the sample points are calculated by the numerical simu-
lation, KRG has the following form [67]:

S () =ptex), (18)
where u is the mean value of the Gaussian process and €(x) is
the error term which conforms to a normal distribution with
the mean of 0 and variance of o°. KRG considers the error
terms at any two points to be correlated:

R(Qk, x/, xj) = Corr[e(x"), e(x”)]
= exp[ Zn: Gk‘xk’?xi
=1

where n represents the number of design variables. 8, (k= 1,
2, ..., n) is the undetermined coefficient. The response value
J(x) at the point x can be estimated according to KRG:

y(x)=a+r'R(y—1a). (20)
And the variance of predicted values:

], (19)

2
(1-1R’'r)

2 =2 Tp—
s2x)=641-rR'r+ —
) 1R

) 21

where i and 7 are the estimated values of undetermined
coefficients x4 and o

1'R
= ITR—IZ ) (22)
T 1 -
6'2: (yillu)]: (yilﬂ)’ (23)
where
r; = Cort[e(x), e(x)]. (24)

3.1.2  Acquisition function

Acquisition function is the key component of the SML,
which determines the selection of each update point. For any
unknown point x, KRG provides the predicted value y(x) as
well as the standard deviation of the predicted value s(x). On
the one hand, it can be chosen the minimum value of KRG
prediction y(x) as the update point. On the other hand, it can
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Figure 4 Framework for establishing dynamic surrogate model.

be selected the maximum value of the standard deviation s(x)
of KRG as the update point. Selecting the minimum value as
the update point can fully explore the region near the current
optimal solution and further improve the current optimal
solution, but such a search may make the update points fall
into some local optimal point. Selecting the maximum value
of s(x) as the update point can explore the unknown region as
much as possible, and the update point is selected in the
region where the sampling points are sparse so that the
search skips out of the local region, but such a search is very
time-consuming and requires a large number of additional
update points to find the optimal solution of the original
problem.

The Expected improvement (EI) criteria provide a good
balance of these two search models. For an unknown point x,
it can be considered as a random variable conforming to a

normal distribution with the mean y(x) and standard devia-

tion s(x):

Y(x) ~ Ny (x),s(x)). (25)
If the minimum value of the current prediction is f,;,, the

improvement of the exact value of an unknown point x to the

current optimal solution can also be seen as a random vari-
able:

I1(x) = max[fmin -Y(x), O]. (26)

The physical meaning of the £/ function is the expectation
of this improved value.

I’
)m s P 2s(x)° ar. @7

Solving this equation yields an expression for the EI
function as

L) = [ ™~ ¥
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EI(X) = (frn —yA(x))d)[‘if mms(_x);(X)]
MW[%} (28)

where @(-) and ¢(-) denote the probability density function
and cumulative distribution function of the standard normal
distribution. The first term of the E/ function increases as
¥(x) decreases, so it tends to select points with smaller pre-
diction values as update points. The second term of the E/
function increases as s(x) increases, so it tends to select
points with a larger prediction variance as update points. The
EI function is a combination of these two terms, so the
function will consider both points with smaller prediction
values and larger variance values when selecting update
points.

3.2 Optimization algorithm

Genetic algorithm is used to find the optimal value. The
method converts each design variable into a binary code and
treats it as a chromosome containing information. And then
crossover and mutation operations are performed con-
tinuously on chromosomes inspired by the Darwinian evo-
lution to select individuals with high fitness. The parameters
of the genetic algorithm are shown in Table 1. The popula-
tion size is the capacity of the initial generated individuals
and is also the number of superior individuals selected from
the set of parents and offspring after each evolution. The
larger the population size, the greater the diversity of the
population, and the more complete the optimization. How-
ever, too large a population size can result in a waste of
computational resources. In this paper, we moderately
choose 100 as the population size. Crossover fraction is the
probability that two chromosomes in the same generation
cross over, and a larger crossover fraction ensures that the
genetic algorithm has a global search capability. Mutation
fraction is the probability of mutation for the chromosomes
in the same generation, and a small mutation rate ensures that
the genetic algorithm has the ability to find the local opti-
mum. Therefore, the crossover fraction and the mutation
fraction are set to 0.8 and 0.2, respectively. Maximum gen-
erations, maximum stall generation, and termination toler-
ance are the termination conditions for the genetic algorithm.

Table 1 Parameters of genetic algorithm

Parameters Value
Population size 100
Crossover fraction 0.8
Mutation fraction 0.2
Maximum generations 200
Maximum stall generation 20
Termination tolerance 10°¢

Sci China Tech Sci

The values taken in Table 1 imply that the optimization is
considered to converge when the change in the fitness of the
optimal individual is less than 10°° after 20 generations of
evolution, and otherwise evolution automatically stops after
200 generations.

4 Results and discussion

4.1 Sensitivity analysis of parameters

Sensitivity analysis is firstly performed on the coordinates of
control points to reduce the number of design variables and
simplifying the optimization process. The curve with three
control points is employed in this section for convenient
analysis, and six parameters consisting of the horizontal and
vertical coordinates of the three control points are extracted,
namely, x;, X,, X3, V1, V2, V3. The parameters and the variation
ranges for sensitivity analysis are shown in Figure 5. PEC is
chosen as an evaluation indicator and is calculated by the
CFD solver with Re = 10000. A six-parameter 3-level ex-
periment designed by Taguchi method is employed, and the
results are shown in Table 2, where /; is the sum of the
numerical solutions corresponding to every parameter at the
ith level, i =1, 2, 3. The range K reflects the impact degree of
the parameters and is calculated as follows:

K =max{l,,1,,1;} —min{l,, 1, I;}. (29)

The parameter having a higher K suggests a stronger im-
pact on the PEC. As can be seen from Table 3, the impact of
vertical coordinates is far greater than that of horizontal
coordinates. Besides, as the number of control points in-
creases, the variation range of the horizontal coordinates of
the control points decreases, resulting in a much lower sen-
sitivity. Therefore, only the vertical coordinates of the con-
trol points are considered as design variables in the present

"r

10 | —_ —_ —_

y (mm)

Figure 5 (Color online) Six investigated parameters and variation ranges
for sensitivity analysis.



Shi CY, et al.  Sci China Tech Sci 9
Table 2 Orthogonal test design and results
No. X1 X2 X3 1 p) V3 PEC No X1 X2 X3 1 V2 V3 PEC
1 1.25 3.75 6.75 2 2 2 0.736 15 2.5 5 8.75 2 10 2 0.959
2 1.25 3.75 6.75 2 6 6 0.782 16 25 6.75 6.75 6 2 6 0.915
3 1.25 3.75 6.75 2 10 10 0.622 17 2.5 6.75 6.75 6 10 0.718
4 1.25 5 7.5 6 2 2 0.727 18 2.5 6.75 6.75 6 10 2 0.794
5 1.25 5 7.5 6 6 6 0.949 19 3.75 3.75 8.75 6 2 10 0.877
6 1.25 5 7.5 6 10 10 0.634 20 3.75 3.75 8.75 6 6 2 0.808
7 1.25 6.75 8.75 10 2 2 0.600 21 3.75 3.75 8.75 6 10 6 0.789
8 1.25 6.75 8.75 10 6 6 0.767 22 3.75 5 6.75 10 2 10 0.681
9 1.25 6.75 8.75 10 10 10 0.560 23 3.75 5 6.75 10 6 2 0.664
10 2.5 3.75 7.5 10 2 6 0.907 24 3.75 5 6.75 10 10 6 0.666
11 2.5 3.75 7.5 10 6 10 0.651 25 3.75 6.75 7.5 2 2 10 0.607
12 2.5 3.75 7.5 10 10 2 0.623 26 3.75 6.75 7.5 2 6 2 1.003
13 25 5 8.75 2 2 6 0.726 27 3.75 6.75 7.5 2 10 6 0.721
14 2.5 5 8.75 2 6 10 0.645 - - - — — - - -
Table 3 Sensitivity analysis results genetic algorithm coupled with the CFD solver (GACS),
Index X X X 7 s 74 which utilizes the CFD solver to calculate the fitness value of
I 6378 6796 6578 6802 6776 6915 the population generated by the genetic algorithm. The
L 6937 6652 6821 7212 6988 7222 comparison is given.in Tabl.e 4, and .the optimizatiqn result
I 6817 6684 6733 6118 6367 5994 obtained b}l SML is consistent .Wlth thosc? obtained by
GACS, which proves that the obtained result is accurate and
K 0.560 0.144 0.244 1.094 0.621 1.228

study, considering the control points uniformly distributed in
the horizontal direction.

4.2 Optimization process analysis and validation

As shown in Figure 6, three graphs show the optimization
process using SML with three vertical coordinates as opti-
mization parameters and PEC,, as the optimization objec-
tive. Figure 6(a) shows the variation of the PEC,, based on
SML with the number of updates, V,. With the increase of N,,
PEC,,, varies accordingly, which keeps unchanged until the
number of updates reaches N, =23. The optimization process
continues to perform until the termination condition is sa-
tisfied at N, = 42 that the PEC,, has not changed in the 20
updates before termination and E1,,, is less than 10" F igure
6(b) gives the change of El,,,. As the optimization proceeds,
EI . decreases gradually indicating that the improvement
potential of the model decreases. Figure 6(c) shows the
changes in design variables corresponding to PEC,,. It can
be seen that the optimal distribution of design variables is
determined once the PEC,, is stabilized, and the final opti-
mal parameters is y; = 6.487 mm, y, = 3.707 mm, y; =
5.891 mm.

A validation process needs to be executed firstly to de-
termine the superiority of SML in optimization accuracy.
The exact optimal solution is obtained by the method of

does not fall into the local optimum. In the optimization
process based on SML, a total of 62 points are sampled, of
which 20 points are derived from the initial LHS sampling,
and 42 points are added to update the model to make the
optimization process finally converge. To compare with the
traditional Kringing model (TKM), 62 points are directly
sampled using the LHS method to build a TKM. Prediction
and optimization are performed based on TKM and the
comparison is also shown in Table 4. The result obtained by
SML has fewer errors and is closer to the true optimal value
than that obtained by TKM with the same number of sample
points. This is because most sample points of SML are more
targeted and more gathered near the optimal value, which
ensures the prediction accuracy near the optimal value. On
the other hand, the sample points of TKM are uniformly
distributed, so some local features cannot be accurately ex-
pressed, leading to a reduction in local prediction accuracy.

Additionally, to address the different requirements applied
in the engineering, a multi-objective optimization is per-
formed to obtain the best compromise solutions under dif-
ferent weights between the heat transfer capacity Nu and the
flow resistance factor /. The optimal value can be obtained by
weighted summation of the normalized values for two ob-
jectives. By modifying the weight factor, a Pareto frontier
can be obtained by SML. To verify its accuracy in multi-
objective optimization, it is compared with the Pareto fron-
tier set obtained by NSGA-II [68] coupled with the CFD
solver method. The comparison in Figure 7 proves the re-
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Figure 6 The process of searching the optimal PEC with the dynamic
surrogate model. (a) PEC,, with updating number N,; (b) El,,, with up-
dating number N,; (c) optimal variables with updating number N,.

liability of the optimization process based on the weights and
the SML method.

4.3 Single objective optimization analysis

As the optimization method is validated, in this section, a
single objective optimization is performed with the PEC as
the objective to investigate the proper number of control
points, the best profile for corrugated tubes, and its flow and
heat transfer characteristics.

4.3.1 Effect of control points number
From egs. (1)—(4), the generation of B-spline is significantly
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Table 4 Comparisons of the accuracy and efficiency with different
methods

Method Vi Vs 3 PEC
SML 6.48707 3.70765 5.89107 1.12028
GACS 6.48932 3.70819 5.89205 1.12043
TKM 7.51836 2.88367 6.58953 1.07092
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Figure 7 Validation for the multi-objective optimization.

related to the control point number, n. The larger #n is, the
more profiles the B-spline can characterize. Therefore, in this
section, the curves with n =3, n =5, n = 7 are employed to
investigate the effects of n on the best profile and the optimal
comprehensive performance, PEC,,, at Re = 10000.

The optimal curves and the vertical coordinates with dif-
ferent n obtained by SML are given in Figure 8. It gives that
as n increases, the transition of the best profile is smoother
and the control points are closer to the curve. The compar-
ison shows that the difference between the optimal profiles
with n =5 and n =7 is not significant, which proves that n =5
is sufficient to characterize this optimal profile.

The variation of thermal-hydraulic performance for the
optimal profiles is given in Figure 9. As n increases, the Nuy
and f,,, are both reduced, but the PEC,, increases, which
means the curve is further optimized leading to a higher
benefit of reduced flow resistance than weakness in heat
transfer. The PEC,, does not change after n = 5, which
indicates that the optimization potential is almost non-ex-
istent, and PEC,,, = 1.1849 at this point.

4.3.2 Flow and heat transfer characteristics analysis

Two periodic units in the middle of the test section are se-
lected for heat transfer and flow characteristics analysis,
where the local pressure difference, AP, is calculated
considering the starting cross-sectional pressure as the re-
ference. Figure 10 shows the comparison of the local Nu,
Ny, and APy, along the mainstream direction over the
best profiles of n = 3, n = 5, and smooth tube. And the
velocity vector of the fluid in the optimal profiles at Re =
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Figure 8 Variation of the optimal profiles with control points number n.
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Figure 9 Variation of the performance with control points number 7.
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Figure 10  Nu,,, distributions and pressure distributions for the optimal
profiles.

10000 with n =3 and n = 5 is shown in Figure 11. Owing to
the sudden expanding of the tube wall, an adverse pressure
gradient region is produced to reduce the fluid velocity
[69,70], and the flow starts to separate from the wall indu-
cing a reduction in heat transfer capacity even lower than that
of the smooth tube. As the flow proceeds, the converging of

Sci China Tech Sci 11

Figure 11 Velocity vector under the optimal profiles. (a) n =3; (b) n = 5.

the tube makes the flow reattached to the wall. Because there
is an angle between the mainstream direction and the con-
verging wall, the fluid scours the wall which makes the
Nuy,eq near the reattachment point increase sharply. The best
profiles with n = 3 and n = 5 both are presented as a double-
crest shape. Therefore, in a periodic unit, there are also two
local maximum values in the distributions of Nu,,, and
AP local*

From the profile, the height of the first crest for the optimal
curve with n =5 is almost the same with n = 3, but the span is
smaller and the downslope is steeper. Therefore, the fluid
scours the wall more intensely and the first maximum Nu,q
for n =15 is higher than n = 3. The height of the trough for n =
3 is lower than the smooth tube and n = 5, which causes the
velocity in n = 3 is higher and obtains a better local thermal
performance in the second crest. Overall, the heat transfer
performance of the enhanced tube with the optimal profile of
n =3 is slightly higher compared to that of » = 5. However,
for the pump power loss, the pressure drop caused by the
tube contraction is higher than the pressure increase caused
by tube expansion, which makes the pump power loss larger
than the smooth tube. The deeper the tube converges, the
greater the pumping power loss the flow presents. Therefore,
the pump power loss of the tube with the optimal profile of n
= 3 is greater than that of n = 5, the pressure drop in the
whole test section as shown in Figure 12.

4.3.3  Variation of the optimal profile with Reynolds num-
ber
Choosing PEC as the optimization objective, it is also ex-
plored for the variation of the optimal profile with the in-
creasing Re. As shown in Figure 13, three optimal profiles,
C,, C,, C; are obtained at Re = 8000, 10000, 12000, re-
spectively. The optimal profiles keep similar that two wave
crests and one wave trough exist in a design unit. The ob-
vious difference appears in the first wave crest. As Re in-
creases, the wave-amplitude of the first wave gradually gets
smaller, and the profile of the corrugated tube becomes
smoother. As Re > 10000, the variation is no longer con-
siderable.

The performance evaluation with three profiles is shown in
Figure 14. The thermal performance of three configurations
all increases with the increasing Re. And the heat transfer
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Figure 12 Pressure distributions for the optimal designs.
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Figure 13 Variations of the optimal profiles at different Reynolds num-
bers.
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Figure 14 Thermal-hydraulic performances of the optimal profiles at
different Reynolds numbers.

rate with the profile C, is larger than other profiles, which
indicates that the improvement of heat transfer at a lower Re
contributes to enhancing the comprehensive performance of
the corrugated tube. The flow resistance of three configura-
tions all reduces with the increasing Re. The smallest flow
resistance appears in the profile C; which exhibits that as the
flow velocity increases, the focus of optimization needs to
gradually switch from heat transfer improvement to flow
resistance reduction. Figure 15 shows the variation of PEC
for three profiles. The PEC,, decreases as the Re increases,
where the PEC,, is 1.2415 at Re = 8000, 1.1845 at Re =
10000, and 1.1504 at Re = 12000, respectively. The overall
thermal performance studied in this paper is compared with
previous studies. The cases involved in twisted oval tube
reported by Tang et al. [15], transversely corrugated tube by
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Figure 15 The optimal PEC distribution at different Reynolds numbers.

Mohammed et al. [17], arc-ring ribbed tube reported by Al-
Obaidi and Alhamid [22], convex concave corrugated tube
reported by Sadighi Dizaji et al. [71], sprially semicircle-
grooved tube by Promthaisong et al. [72]. It is seen from
Figure 16 that the present study possesses more considerable
performance than others and exhibits a broad application
prospect.

4.4 Multi-objective optimization results analysis

The optimal profile with the PEC as an objective gives the
design with the best comprehensive performance, but the
design may not meet the heat transfer or flow requirements in
several situations. Improperly increasing the thermal per-
formance of the corrugated tubes will most likely result in an
additional increase in flow resistance. Therefore, in order to
meet the different heat transfer and flow resistance require-
ments, it is necessary to make a comprehensive trade-off
between two objectives, and obtain the optimization results
with different weights.

4.4.1 Effect of control points number

Keeping working conditions unchanged, multi-objective
optimization with n =3 and n =5 is carried out firstly, and the
optimization results under different weights are shown in
Figure 17. Every point is the optimal solution with no other
points superior to it. There does not exist a point in the design
space where Nu,,. and f get the best at the same time. Design
B is a profile with the minimum flow resistance at n = 3 and
n = 5, corresponding to a smooth tube. Design A is the
optimum profile considering only the heat transfer perfor-
mance under n = 3. The maximum Nu,,, = 406.600 with the
maximum f'= 6.772. Design A’ is the best point considering
only the heat transfer performance under n = 5 with Nu,,, =
418.912, which is 3.028% better than » = 3, indicating that
the potential of heat transfer enhancement for the corrguated
tube is improved with the increasing n. This is particularly
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Figure 16 Comparisons of PEC in present study with previous research.
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Figure 17 The optimal dominant solutions with different n.

useful in some cases with high requirements for heat transfer.
At the same time, the corrugated tube with n = 5 obtained a
higher thermal performance when the flow resistance is the
same as A, and this exhibits the excellent performance of the
corrugated tube with n = 5. The corresponding profiles as
well as the Ny, distribution are shown in Figure 18. It can
be seen in the figure that the upstream half of two profiles
almost overlap, and the difference is mainly in the down-
stream half. And combined with the Nu,,, distribution, it can
be inferred that the change with » = 5 in downstream half
weakens the local heat exchange but strengthens the local
heat exchange in the upstream half of the next design unit.

4.4.2 Designs with different weight considerations

The designs with two objective weights (w;, w,) = (0.2, 0.8),
(0.4, 0.6), (0.6, 0.4), (0.8, 0.2), are selected for heat transfer
and flow characteristics analysis. As shown in Figure 19, as
the heat transfer weight w, gets larger and the flow resistance
weight w, gets smaller, the optimal vy, v, ¥3, V4, Vs then
become progressively smaller. When (w;, w,) = (0.2, 0.8) and
(0.4, 0.6), the optimal profile with a double-trough structure
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Figure 18 Nuy,, distributions and the profiles for design A, design A’
and design B.

is present in the design unit. The presence of two troughs
enhances the flow velocity of the fluid in the tube, and two
secondary flows are formed respectively at the connection of
different design units and between two troughs. It further
enhances the convective heat transfer coefficient at the ex-
pense of increasing flow resistance. Compared with (w;, w,)
=(0.2, 0.8), the trough depth is deeper and therefore the flow
is more intense under the weights of (w;, w,) = (0.4, 0.6).
When (w, w,) = (0.6, 0.4), and (w;, w,) = (0.8, 0.2), the
optimal profile changes from a double-trough form to a
single-trough form. As w; increases and w, decreases, the
trough becomes deeper. The flow develops a strong sec-
ondary flow at the corrugation unit connection, while the
flow velocity also gradually increases to the maximum.
Compared with the temperature distribution in Figure 20, the
temperature distribution of the fluid is more uniform with the
increase of w;. This is because the deeper trough has a
stronger ability to mix high temperature fluid from the wall
into the core low temperature domain, which makes the heat
flux diffused more fully in the fluid.

4.4.3 Variation of the optimal set with Reynolds number
The optimal sets of corrugated tubes under different working
conditions are given in Figure 21. Visibly, the trends of
Pareto solution are similar in three working conditions. In the
range of /' < 1, a great heat transfer improvement can be
achieved by sacrificing a little flow resistance, and the dif-
ference between the three working conditions is not obvious
enough. As fincreases in the range of /> 4, the heat transfer
improvement obtained by sacrificing the flow resistance is
no longer considerable, and there is also a bigger difference
in Nu for different working conditions at the same f. With the
increase of Re, the minimum and maximum f are reduced,
while the minimum and maximum Nu are increased, and the
maximum Nu,, of 358.540, 418.912, and 478.821 are ac-
quired at Re = 8000, 10000, and 12000, respectively.
Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) is introduced to determine the best
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compromise solution from the Pareto front, whose brief de-
scription is given at the end of this paper as Appendix A. And
the distance from the Pareto solution to the positive-ideal
solution (d,") and the negative-ideal solution (4, ) is shown in
Figure 22. By TOPSIS, the designs with (w;, w,) = (0.4, 0.6)
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Figure 21 Optimal performances with different weights consideration
under different Reynolds numbers.

are the best compromise solutions. Compared with the de-
sign with the maximum thermal performance, namely (w,,
w,) = (1, 0), the thermal performance of the best compromise
solutions is sacrificed by 36.754%, 37.088%, and 35.005% at
Re = 8000, 10000, 12000, respectively. And the flow re-
sistance of the compromise solutions is improved by
83.917%, 85.465%, and 84.473%, respectively.

5 Conclusions

The present paper mainly investigates the optimal profile of
the corrugated tube by surrogate combined with machine
learning technique. The surrogate model used in this paper
has been verified to have considerable advantages in terms of
prediction accuracy and optimization efficiency. The profiles
corresponding to the optimal performance with the control
point number, variable Re and different objective weights are
further obtained. The conclusions can be drawn as follows.

(1) The method of surrogate based on machine learning
technique is validated to have a higher prediction accuracy,
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Figure 22 Distance from the Pareto solution to the positive-ideal and the negative-ideal solution.

and by this method, the desirable optimization results are
obtained.

(2) The comprehensive performance of the corrugated tube
is more sensitive to the vertical coordinates of the control
points. As the control point number » increases from 3 to 5,
the optimal PEC and maximum average Nu are both im-
proved.

(3) The similar optimal profiles of the corrugations are
obtained at different Reynolds numbers. The optimal PEC is
1.2415, 1.1845, and 1.1504, respectively at Re 8000,
10000, and 12000. And the optimal shape is a double-trough
shape.

(4) A multi-objective optimization is performed to meet
different heat transfer or flow requirements. The best com-
promise solution is determined, compared to the design with
the maximum thermal performance, whose thermal perfor-
mance is sacrificed by 36.754%, 37.088%, and 35.005% but
flow resistance is improved by 83.917%, 85.465%, and
84.473% at Re = 8000, 10000, 12000, respectively.

Appendix A: The process of TOPSIS

The process of TOPSIS to determine the best comprise so-
lution has been briefed as follows.

Step 1 Input a decision matrix S,,,, and normalize S;; to be
the normalized value z; using the equation below, and re-
ceive a normalized matrix z,,,:

Sy

i=1 Y

Step 2 Determine the positive ideal solution §™ and the
negative ideal solution S :

§F=

J

Li=1,2, ... (A1)

MN(Z gy s Z o) = 1,2, 00, (A2)

S;: max(zlj,...,zmj J=1,2,..,n. (A3)

Step 3 Calculate the distances from the normalized value z;

to the positive ideal solution Sf, and the negative ideal so-
lution §; , using n-dimensional Euclidean distance.

(A4)

d; =

i ijl(z i 5./7)2 i

(AS5)

Step 4 Calculate the relative closeness c; to the ideal so-
lution for each Pareto solution, which is specified as
__ a7
Pdi+dy)
Step 5 Rank the preference order and choose the best
compromise solution whose relative closeness ¢; is the clo-
sest to 0.

c i=1,2,.. (A6)
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